Giải tích Ví dụ

Tìm Các Điểm Cực Trị 4x^3-9x^4
Bước 1
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 1.1
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 1.1.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 1.1.2
Tính .
Nhấp để xem thêm các bước...
Bước 1.1.2.1
không đổi đối với , nên đạo hàm của đối với .
Bước 1.1.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.1.2.3
Nhân với .
Bước 1.1.3
Tính .
Nhấp để xem thêm các bước...
Bước 1.1.3.1
không đổi đối với , nên đạo hàm của đối với .
Bước 1.1.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.1.3.3
Nhân với .
Bước 1.1.4
Sắp xếp lại các số hạng.
Bước 1.2
Đạo hàm bậc nhất của đối với .
Bước 2
Cho đạo hàm bằng rồi giải phương trình .
Nhấp để xem thêm các bước...
Bước 2.1
Cho đạo hàm bằng .
Bước 2.2
Đưa ra ngoài .
Nhấp để xem thêm các bước...
Bước 2.2.1
Đưa ra ngoài .
Bước 2.2.2
Đưa ra ngoài .
Bước 2.2.3
Đưa ra ngoài .
Bước 2.3
Nếu bất kỳ thừa số riêng lẻ nào ở vế trái của phương trình bằng , toàn bộ biểu thức sẽ bằng .
Bước 2.4
Đặt bằng và giải tìm .
Nhấp để xem thêm các bước...
Bước 2.4.1
Đặt bằng với .
Bước 2.4.2
Giải để tìm .
Nhấp để xem thêm các bước...
Bước 2.4.2.1
Lấy căn đã chỉ định của cả hai vế của phương trình để loại bỏ số mũ ở vế trái.
Bước 2.4.2.2
Rút gọn .
Nhấp để xem thêm các bước...
Bước 2.4.2.2.1
Viết lại ở dạng .
Bước 2.4.2.2.2
Đưa các số hạng dưới dấu căn ra ngoài, giả sử đó là các số thực dương.
Bước 2.4.2.2.3
Cộng hoặc trừ .
Bước 2.5
Đặt bằng và giải tìm .
Nhấp để xem thêm các bước...
Bước 2.5.1
Đặt bằng với .
Bước 2.5.2
Giải để tìm .
Nhấp để xem thêm các bước...
Bước 2.5.2.1
Cộng cho cả hai vế của phương trình.
Bước 2.5.2.2
Chia mỗi số hạng trong cho và rút gọn.
Nhấp để xem thêm các bước...
Bước 2.5.2.2.1
Chia mỗi số hạng trong cho .
Bước 2.5.2.2.2
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 2.5.2.2.2.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 2.5.2.2.2.1.1
Triệt tiêu thừa số chung.
Bước 2.5.2.2.2.1.2
Chia cho .
Bước 2.6
Đáp án cuối cùng là tất cả các giá trị làm cho đúng.
Bước 3
Tìm các giá trị có đạo hàm tại đó không xác định.
Nhấp để xem thêm các bước...
Bước 3.1
Tập xác định của biểu thức là tất cả các số thực trừ trường hợp biểu thức không xác định. Trong trường hợp này, không có số thực nào làm cho biểu thức không xác định.
Bước 4
Tính tại các giá trị có đạo hàm bằng hoặc không xác định.
Nhấp để xem thêm các bước...
Bước 4.1
Tính giá trị tại .
Nhấp để xem thêm các bước...
Bước 4.1.1
Thay bằng .
Bước 4.1.2
Rút gọn.
Nhấp để xem thêm các bước...
Bước 4.1.2.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 4.1.2.1.1
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 4.1.2.1.2
Nhân với .
Bước 4.1.2.1.3
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 4.1.2.1.4
Nhân với .
Bước 4.1.2.2
Cộng .
Bước 4.2
Tính giá trị tại .
Nhấp để xem thêm các bước...
Bước 4.2.1
Thay bằng .
Bước 4.2.2
Rút gọn.
Nhấp để xem thêm các bước...
Bước 4.2.2.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 4.2.2.1.1
Áp dụng quy tắc tích số cho .
Bước 4.2.2.1.2
Một mũ bất kỳ số nào là một.
Bước 4.2.2.1.3
Nâng lên lũy thừa .
Bước 4.2.2.1.4
Kết hợp .
Bước 4.2.2.1.5
Áp dụng quy tắc tích số cho .
Bước 4.2.2.1.6
Một mũ bất kỳ số nào là một.
Bước 4.2.2.1.7
Nâng lên lũy thừa .
Bước 4.2.2.1.8
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 4.2.2.1.8.1
Đưa ra ngoài .
Bước 4.2.2.1.8.2
Đưa ra ngoài .
Bước 4.2.2.1.8.3
Triệt tiêu thừa số chung.
Bước 4.2.2.1.8.4
Viết lại biểu thức.
Bước 4.2.2.1.9
Viết lại ở dạng .
Bước 4.2.2.2
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 4.2.2.3
Viết mỗi biểu thức với mẫu số chung là , bằng cách nhân từng biểu thức với một thừa số thích hợp của .
Nhấp để xem thêm các bước...
Bước 4.2.2.3.1
Nhân với .
Bước 4.2.2.3.2
Nhân với .
Bước 4.2.2.4
Kết hợp các tử số trên mẫu số chung.
Bước 4.2.2.5
Trừ khỏi .
Bước 4.3
Liệt kê tất cả các điểm.
Bước 5