Nhập bài toán...
Giải tích Ví dụ
Bước 1
Bước 1.1
Chia mỗi số hạng cho để làm cho vế phải bằng một.
Bước 1.2
Rút gọn từng số hạng trong phương trình để đặt vế phải bằng . Dạng chính tắc của hình elip hoặc hyperbol yêu cầu phía vế phải của phương trình bằng .
Bước 2
Đây là dạng của một hình elip. Sử dụng dạng này để xác định các giá trị được sử dụng để tìm tâm cùng với trục lớn và trục nhỏ của hình elip.
Bước 3
Tương ứng các giá trị trong elip này với dạng chính tắc. Biến là bán kính của trục chính của elip, là bán kính của trục phụ của elip, là khoảng cách theo trục x tính từ gốc tọa độ, và là khoảng cách theo trục y tính từ gốc tọa độ.
Bước 4
Tâm của một elip có dạng . Thay vào các giá trị của và .
Bước 5
Bước 5.1
Tìm khoảng cách từ tâm đến tiêu điểm của hình elip bằng công thức sau.
Bước 5.2
Thay các giá trị của và vào công thức.
Bước 5.3
Rút gọn.
Bước 5.3.1
Rút gọn biểu thức.
Bước 5.3.1.1
Áp dụng quy tắc tích số cho .
Bước 5.3.1.2
Nâng lên lũy thừa .
Bước 5.3.2
Viết lại ở dạng .
Bước 5.3.2.1
Sử dụng để viết lại ở dạng .
Bước 5.3.2.2
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 5.3.2.3
Kết hợp và .
Bước 5.3.2.4
Triệt tiêu thừa số chung .
Bước 5.3.2.4.1
Triệt tiêu thừa số chung.
Bước 5.3.2.4.2
Viết lại biểu thức.
Bước 5.3.2.5
Tính số mũ.
Bước 5.3.3
Nhân với .
Bước 5.3.4
Viết lại ở dạng .
Bước 5.3.4.1
Sử dụng để viết lại ở dạng .
Bước 5.3.4.2
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 5.3.4.3
Kết hợp và .
Bước 5.3.4.4
Triệt tiêu thừa số chung .
Bước 5.3.4.4.1
Triệt tiêu thừa số chung.
Bước 5.3.4.4.2
Viết lại biểu thức.
Bước 5.3.4.5
Tính số mũ.
Bước 5.3.5
Rút gọn biểu thức.
Bước 5.3.5.1
Nhân với .
Bước 5.3.5.2
Trừ khỏi .
Bước 6
Bước 6.1
Có thể tìm đỉnh đầu tiên của một elip bằng cách cộng vào .
Bước 6.2
Thay các giá trị đã biết của , , và vào công thức.
Bước 6.3
Rút gọn.
Bước 6.4
The second vertex of an ellipse can be found by subtracting from .
Bước 6.5
Thay các giá trị đã biết của , , và vào công thức.
Bước 6.6
Rút gọn.
Bước 6.7
Elip có hai đỉnh.
:
:
:
:
Bước 7
Bước 7.1
Tiêu điểm đầu tiên của một hình elip có thể tìm được bằng cách cộng vào .
Bước 7.2
Thay các giá trị đã biết của , , và vào công thức.
Bước 7.3
Rút gọn.
Bước 7.4
Có thể tìm tiêu điểm đầu tiên của một hình elip bằng cách trừ từ .
Bước 7.5
Thay các giá trị đã biết của , , và vào công thức.
Bước 7.6
Rút gọn.
Bước 7.7
Elip có hai tiêu điểm.
:
:
:
:
Bước 8
Bước 8.1
Tìm tâm sai bằng công thức sau.
Bước 8.2
Thay giá trị của và vào công thức.
Bước 8.3
Rút gọn.
Bước 8.3.1
Rút gọn tử số.
Bước 8.3.1.1
Áp dụng quy tắc tích số cho .
Bước 8.3.1.2
Nâng lên lũy thừa .
Bước 8.3.1.3
Viết lại ở dạng .
Bước 8.3.1.3.1
Sử dụng để viết lại ở dạng .
Bước 8.3.1.3.2
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 8.3.1.3.3
Kết hợp và .
Bước 8.3.1.3.4
Triệt tiêu thừa số chung .
Bước 8.3.1.3.4.1
Triệt tiêu thừa số chung.
Bước 8.3.1.3.4.2
Viết lại biểu thức.
Bước 8.3.1.3.5
Tính số mũ.
Bước 8.3.1.4
Nhân với .
Bước 8.3.1.5
Viết lại ở dạng .
Bước 8.3.1.5.1
Sử dụng để viết lại ở dạng .
Bước 8.3.1.5.2
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 8.3.1.5.3
Kết hợp và .
Bước 8.3.1.5.4
Triệt tiêu thừa số chung .
Bước 8.3.1.5.4.1
Triệt tiêu thừa số chung.
Bước 8.3.1.5.4.2
Viết lại biểu thức.
Bước 8.3.1.5.5
Tính số mũ.
Bước 8.3.1.6
Nhân với .
Bước 8.3.1.7
Trừ khỏi .
Bước 8.3.2
Kết hợp và vào một căn thức đơn.
Bước 8.3.3
Triệt tiêu thừa số chung của và .
Bước 8.3.3.1
Đưa ra ngoài .
Bước 8.3.3.2
Triệt tiêu các thừa số chung.
Bước 8.3.3.2.1
Đưa ra ngoài .
Bước 8.3.3.2.2
Triệt tiêu thừa số chung.
Bước 8.3.3.2.3
Viết lại biểu thức.
Bước 8.3.3.2.4
Chia cho .
Bước 9
Những giá trị này đại diện cho các giá trị quan trọng cho việc vẽ đồ thị và phân tích một hình elip.
Tâm:
:
:
:
:
Tâm sai:
Bước 10