Nhập bài toán...
Giải tích Ví dụ
Bước 1
Bước 1.1
Tìm đạo hàm bậc một.
Bước 1.1.1
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng là trong đó và .
Bước 1.1.1.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 1.1.1.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.1.1.3
Thay thế tất cả các lần xuất hiện của với .
Bước 1.1.2
Đạo hàm của đối với là .
Bước 1.1.3
Nhân với .
Bước 1.2
Đạo hàm bậc nhất của đối với là .
Bước 2
Bước 2.1
Cho đạo hàm bằng .
Bước 2.2
Nếu bất kỳ thừa số riêng lẻ nào ở vế trái của phương trình bằng , toàn bộ biểu thức sẽ bằng .
Bước 2.3
Đặt bằng và giải tìm .
Bước 2.3.1
Đặt bằng với .
Bước 2.3.2
Giải để tìm .
Bước 2.3.2.1
Lấy cosin nghịch đảo của cả hai vế của phương trình để trích xuất từ trong cosin.
Bước 2.3.2.2
Rút gọn vế phải.
Bước 2.3.2.2.1
Giá trị chính xác của là .
Bước 2.3.2.3
Hàm cosin dương ở góc phần tư thứ nhất và thứ tư. Để tìm đáp án thứ hai, hãy trừ góc tham chiếu khỏi để tìm đáp án trong góc phần tư thứ tư.
Bước 2.3.2.4
Rút gọn .
Bước 2.3.2.4.1
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 2.3.2.4.2
Kết hợp các phân số.
Bước 2.3.2.4.2.1
Kết hợp và .
Bước 2.3.2.4.2.2
Kết hợp các tử số trên mẫu số chung.
Bước 2.3.2.4.3
Rút gọn tử số.
Bước 2.3.2.4.3.1
Nhân với .
Bước 2.3.2.4.3.2
Trừ khỏi .
Bước 2.3.2.5
Tìm chu kỳ của .
Bước 2.3.2.5.1
Chu kỳ của hàm số có thể được tính bằng .
Bước 2.3.2.5.2
Thay thế với trong công thức cho chu kỳ.
Bước 2.3.2.5.3
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa và là .
Bước 2.3.2.5.4
Chia cho .
Bước 2.3.2.6
Chu kỳ của hàm là nên các giá trị sẽ lặp lại sau mỗi radian theo cả hai hướng.
, cho mọi số nguyên
, cho mọi số nguyên
, cho mọi số nguyên
Bước 2.4
Đặt bằng và giải tìm .
Bước 2.4.1
Đặt bằng với .
Bước 2.4.2
Giải để tìm .
Bước 2.4.2.1
Lấy nghịch đảo sin của cả hai vế của phương trình để trích xuất từ trong hàm sin.
Bước 2.4.2.2
Rút gọn vế phải.
Bước 2.4.2.2.1
Giá trị chính xác của là .
Bước 2.4.2.3
Hàm sin dương trong góc phần tư thứ nhất và thứ hai. Để tìm đáp án thứ hai, trừ góc tham chiếu khỏi để tìm đáp án trong góc phần tư thứ hai.
Bước 2.4.2.4
Trừ khỏi .
Bước 2.4.2.5
Tìm chu kỳ của .
Bước 2.4.2.5.1
Chu kỳ của hàm số có thể được tính bằng .
Bước 2.4.2.5.2
Thay thế với trong công thức cho chu kỳ.
Bước 2.4.2.5.3
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa và là .
Bước 2.4.2.5.4
Chia cho .
Bước 2.4.2.6
Chu kỳ của hàm là nên các giá trị sẽ lặp lại sau mỗi radian theo cả hai hướng.
, cho mọi số nguyên
, cho mọi số nguyên
, cho mọi số nguyên
Bước 2.5
Đáp án cuối cùng là tất cả các giá trị làm cho đúng.
, cho mọi số nguyên
Bước 2.6
Hợp nhất các câu trả lời.
, cho mọi số nguyên
, cho mọi số nguyên
Bước 3
Bước 3.1
Tập xác định của biểu thức là tất cả các số thực trừ trường hợp biểu thức không xác định. Trong trường hợp này, không có số thực nào làm cho biểu thức không xác định.
Bước 4
Bước 4.1
Tính giá trị tại .
Bước 4.1.1
Thay bằng .
Bước 4.1.2
Rút gọn.
Bước 4.1.2.1
Giá trị chính xác của là .
Bước 4.1.2.2
Một mũ bất kỳ số nào là một.
Bước 4.2
Tính giá trị tại .
Bước 4.2.1
Thay bằng .
Bước 4.2.2
Rút gọn.
Bước 4.2.2.1
Giá trị chính xác của là .
Bước 4.2.2.2
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 4.3
Liệt kê tất cả các điểm.
, cho mọi số nguyên
, cho mọi số nguyên
Bước 5