Nhập bài toán...
Giải tích Ví dụ
Bước 1
Bước 1.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 1.2
Tính .
Bước 1.2.1
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng là trong đó và .
Bước 1.2.1.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 1.2.1.2
Đạo hàm của đối với là .
Bước 1.2.1.3
Thay thế tất cả các lần xuất hiện của với .
Bước 1.2.2
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.2.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.2.4
Nhân với .
Bước 1.2.5
Di chuyển sang phía bên trái của .
Bước 1.3
Tính .
Bước 1.3.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.3.2
Đạo hàm của đối với là .
Bước 2
Bước 2.1
Rút gọn mỗi số hạng.
Bước 2.1.1
Sử dụng đẳng thức góc nhân đôi để chuyển thành .
Bước 2.1.2
Áp dụng thuộc tính phân phối.
Bước 2.1.3
Nhân với .
Bước 2.1.4
Nhân với .
Bước 2.2
Phân tích thành thừa số.
Bước 2.2.1
Đưa ra ngoài .
Bước 2.2.1.1
Đưa ra ngoài .
Bước 2.2.1.2
Đưa ra ngoài .
Bước 2.2.1.3
Đưa ra ngoài .
Bước 2.2.1.4
Đưa ra ngoài .
Bước 2.2.1.5
Đưa ra ngoài .
Bước 2.2.2
Phân tích thành thừa số.
Bước 2.2.2.1
Phân tích thành thừa số bằng cách nhóm.
Bước 2.2.2.1.1
Sắp xếp lại các số hạng.
Bước 2.2.2.1.2
Đối với đa thức có dạng , hãy viết lại số hạng ở giữa là tổng của hai số hạng có tích là và có tổng là .
Bước 2.2.2.1.2.1
Đưa ra ngoài .
Bước 2.2.2.1.2.2
Viết lại ở dạng cộng
Bước 2.2.2.1.2.3
Áp dụng thuộc tính phân phối.
Bước 2.2.2.1.2.4
Nhân với .
Bước 2.2.2.1.3
Đưa ước số chung lớn nhất từ từng nhóm ra ngoài.
Bước 2.2.2.1.3.1
Nhóm hai số hạng đầu tiên và hai số hạng cuối.
Bước 2.2.2.1.3.2
Đưa ước số chung lớn nhất (ƯCLN) từ từng nhóm ra ngoài.
Bước 2.2.2.1.4
Phân tích đa thức thành thừa số bằng cách đưa ước số chung lớn nhất ra ngoài, .
Bước 2.2.2.2
Loại bỏ các dấu ngoặc đơn không cần thiết.
Bước 2.3
Nếu bất kỳ thừa số riêng lẻ nào ở vế trái của phương trình bằng , toàn bộ biểu thức sẽ bằng .
Bước 2.4
Đặt bằng và giải tìm .
Bước 2.4.1
Đặt bằng với .
Bước 2.4.2
Giải để tìm .
Bước 2.4.2.1
Trừ khỏi cả hai vế của phương trình.
Bước 2.4.2.2
Chia mỗi số hạng trong cho và rút gọn.
Bước 2.4.2.2.1
Chia mỗi số hạng trong cho .
Bước 2.4.2.2.2
Rút gọn vế trái.
Bước 2.4.2.2.2.1
Triệt tiêu thừa số chung .
Bước 2.4.2.2.2.1.1
Triệt tiêu thừa số chung.
Bước 2.4.2.2.2.1.2
Chia cho .
Bước 2.4.2.2.3
Rút gọn vế phải.
Bước 2.4.2.2.3.1
Di chuyển dấu trừ ra phía trước của phân số.
Bước 2.4.2.3
Lấy cosin nghịch đảo của cả hai vế của phương trình để trích xuất từ trong cosin.
Bước 2.4.2.4
Rút gọn vế phải.
Bước 2.4.2.4.1
Giá trị chính xác của là .
Bước 2.4.2.5
Hàm cosin âm trong góc phần tư thứ hai và thứ ba. Để tìm đáp án thứ hai, hãy trừ góc tham chiếu từ để tìm đáp án trong góc phần tư thứ ba.
Bước 2.4.2.6
Rút gọn .
Bước 2.4.2.6.1
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 2.4.2.6.2
Kết hợp các phân số.
Bước 2.4.2.6.2.1
Kết hợp và .
Bước 2.4.2.6.2.2
Kết hợp các tử số trên mẫu số chung.
Bước 2.4.2.6.3
Rút gọn tử số.
Bước 2.4.2.6.3.1
Nhân với .
Bước 2.4.2.6.3.2
Trừ khỏi .
Bước 2.4.2.7
Tìm chu kỳ của .
Bước 2.4.2.7.1
Chu kỳ của hàm số có thể được tính bằng .
Bước 2.4.2.7.2
Thay thế với trong công thức cho chu kỳ.
Bước 2.4.2.7.3
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa và là .
Bước 2.4.2.7.4
Chia cho .
Bước 2.4.2.8
Chu kỳ của hàm là nên các giá trị sẽ lặp lại sau mỗi radian theo cả hai hướng.
, cho mọi số nguyên
, cho mọi số nguyên
, cho mọi số nguyên
Bước 2.5
Đặt bằng và giải tìm .
Bước 2.5.1
Đặt bằng với .
Bước 2.5.2
Giải để tìm .
Bước 2.5.2.1
Cộng cho cả hai vế của phương trình.
Bước 2.5.2.2
Lấy cosin nghịch đảo của cả hai vế của phương trình để trích xuất từ trong cosin.
Bước 2.5.2.3
Rút gọn vế phải.
Bước 2.5.2.3.1
Giá trị chính xác của là .
Bước 2.5.2.4
Hàm cosin dương ở góc phần tư thứ nhất và thứ tư. Để tìm đáp án thứ hai, hãy trừ góc tham chiếu khỏi để tìm đáp án trong góc phần tư thứ tư.
Bước 2.5.2.5
Trừ khỏi .
Bước 2.5.2.6
Tìm chu kỳ của .
Bước 2.5.2.6.1
Chu kỳ của hàm số có thể được tính bằng .
Bước 2.5.2.6.2
Thay thế với trong công thức cho chu kỳ.
Bước 2.5.2.6.3
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa và là .
Bước 2.5.2.6.4
Chia cho .
Bước 2.5.2.7
Chu kỳ của hàm là nên các giá trị sẽ lặp lại sau mỗi radian theo cả hai hướng.
, cho mọi số nguyên
, cho mọi số nguyên
, cho mọi số nguyên
Bước 2.6
Đáp án cuối cùng là tất cả các giá trị làm cho đúng.
, cho mọi số nguyên
Bước 2.7
Hợp nhất các câu trả lời.
, cho mọi số nguyên
, cho mọi số nguyên
Bước 3
Bước 3.1
Bước 3.2
Rút gọn kết quả.
Bước 3.2.1
Rút gọn mỗi số hạng.
Bước 3.2.1.1
Nhân .
Bước 3.2.1.1.1
Kết hợp và .
Bước 3.2.1.1.2
Nhân với .
Bước 3.2.1.2
Áp dụng góc tham chiếu bằng cách tìm góc có giá trị lượng giác tương đương trong góc phần tư thứ nhất. Làm cho biểu thức âm vì sin âm trong góc phần tư thứ ba.
Bước 3.2.1.3
Giá trị chính xác của là .
Bước 3.2.1.4
Áp dụng góc tham chiếu bằng cách tìm góc có các giá trị lượng giác tương đương trong góc phần tư thứ nhất.
Bước 3.2.1.5
Giá trị chính xác của là .
Bước 3.2.1.6
Triệt tiêu thừa số chung .
Bước 3.2.1.6.1
Đưa ra ngoài .
Bước 3.2.1.6.2
Triệt tiêu thừa số chung.
Bước 3.2.1.6.3
Viết lại biểu thức.
Bước 3.2.1.7
Viết lại ở dạng .
Bước 3.2.2
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 3.2.3
Kết hợp các phân số.
Bước 3.2.3.1
Kết hợp và .
Bước 3.2.3.2
Kết hợp các tử số trên mẫu số chung.
Bước 3.2.4
Rút gọn tử số.
Bước 3.2.4.1
Nhân với .
Bước 3.2.4.2
Trừ khỏi .
Bước 3.2.5
Di chuyển dấu trừ ra phía trước của phân số.
Bước 3.2.6
Câu trả lời cuối cùng là .
Bước 4
Đường tiếp tuyến ngang của hàm là .
Bước 5
Kết quả có thể được hiển thị ở nhiều dạng.
Dạng chính xác:
Dạng thập phân:
Bước 6