Giải tích Ví dụ

Tìm Các Điểm Cực Trị y=3x^3-36x-2
Bước 1
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 1.1
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 1.1.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 1.1.2
Tính .
Nhấp để xem thêm các bước...
Bước 1.1.2.1
không đổi đối với , nên đạo hàm của đối với .
Bước 1.1.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.1.2.3
Nhân với .
Bước 1.1.3
Tính .
Nhấp để xem thêm các bước...
Bước 1.1.3.1
không đổi đối với , nên đạo hàm của đối với .
Bước 1.1.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.1.3.3
Nhân với .
Bước 1.1.4
Tìm đạo hàm bằng quy tắc hằng số.
Nhấp để xem thêm các bước...
Bước 1.1.4.1
là hằng số đối với , đạo hàm của đối với .
Bước 1.1.4.2
Cộng .
Bước 1.2
Đạo hàm bậc nhất của đối với .
Bước 2
Cho đạo hàm bằng rồi giải phương trình .
Nhấp để xem thêm các bước...
Bước 2.1
Cho đạo hàm bằng .
Bước 2.2
Cộng cho cả hai vế của phương trình.
Bước 2.3
Chia mỗi số hạng trong cho và rút gọn.
Nhấp để xem thêm các bước...
Bước 2.3.1
Chia mỗi số hạng trong cho .
Bước 2.3.2
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 2.3.2.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 2.3.2.1.1
Triệt tiêu thừa số chung.
Bước 2.3.2.1.2
Chia cho .
Bước 2.3.3
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 2.3.3.1
Chia cho .
Bước 2.4
Lấy căn đã chỉ định của cả hai vế của phương trình để loại bỏ số mũ ở vế trái.
Bước 2.5
Rút gọn .
Nhấp để xem thêm các bước...
Bước 2.5.1
Viết lại ở dạng .
Bước 2.5.2
Đưa các số hạng dưới dấu căn ra ngoài, giả sử đó là các số thực dương.
Bước 2.6
Đáp án hoàn chỉnh là kết quả của cả hai phần dương và âm của đáp án.
Nhấp để xem thêm các bước...
Bước 2.6.1
Đầu tiên, sử dụng giá trị dương của để tìm đáp án đầu tiên.
Bước 2.6.2
Tiếp theo, sử dụng giá trị âm của để tìm đáp án thứ hai.
Bước 2.6.3
Đáp án hoàn chỉnh là kết quả của cả hai phần dương và âm của đáp án.
Bước 3
Tìm các giá trị có đạo hàm tại đó không xác định.
Nhấp để xem thêm các bước...
Bước 3.1
Tập xác định của biểu thức là tất cả các số thực trừ trường hợp biểu thức không xác định. Trong trường hợp này, không có số thực nào làm cho biểu thức không xác định.
Bước 4
Tính tại các giá trị có đạo hàm bằng hoặc không xác định.
Nhấp để xem thêm các bước...
Bước 4.1
Tính giá trị tại .
Nhấp để xem thêm các bước...
Bước 4.1.1
Thay bằng .
Bước 4.1.2
Rút gọn.
Nhấp để xem thêm các bước...
Bước 4.1.2.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 4.1.2.1.1
Nâng lên lũy thừa .
Bước 4.1.2.1.2
Nhân với .
Bước 4.1.2.1.3
Nhân với .
Bước 4.1.2.2
Rút gọn bằng cách trừ các số.
Nhấp để xem thêm các bước...
Bước 4.1.2.2.1
Trừ khỏi .
Bước 4.1.2.2.2
Trừ khỏi .
Bước 4.2
Tính giá trị tại .
Nhấp để xem thêm các bước...
Bước 4.2.1
Thay bằng .
Bước 4.2.2
Rút gọn.
Nhấp để xem thêm các bước...
Bước 4.2.2.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 4.2.2.1.1
Nâng lên lũy thừa .
Bước 4.2.2.1.2
Nhân với .
Bước 4.2.2.1.3
Nhân với .
Bước 4.2.2.2
Rút gọn bằng cách cộng và trừ.
Nhấp để xem thêm các bước...
Bước 4.2.2.2.1
Cộng .
Bước 4.2.2.2.2
Trừ khỏi .
Bước 4.3
Liệt kê tất cả các điểm.
Bước 5