Nhập bài toán...
Giải tích Ví dụ
Bước 1
Bước 1.1
Tìm đạo hàm bậc hai.
Bước 1.1.1
Tìm đạo hàm bậc một.
Bước 1.1.1.1
Tìm đạo hàm bằng cách sử dụng quy tắc thương số, quy tắc nói rằng là trong đó và .
Bước 1.1.1.2
Tìm đạo hàm.
Bước 1.1.1.2.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 1.1.1.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.1.1.2.3
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 1.1.1.2.4
Rút gọn biểu thức.
Bước 1.1.1.2.4.1
Cộng và .
Bước 1.1.1.2.4.2
Nhân với .
Bước 1.1.1.2.5
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 1.1.1.2.6
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.1.1.2.7
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 1.1.1.2.8
Rút gọn biểu thức.
Bước 1.1.1.2.8.1
Cộng và .
Bước 1.1.1.2.8.2
Nhân với .
Bước 1.1.1.3
Rút gọn.
Bước 1.1.1.3.1
Áp dụng thuộc tính phân phối.
Bước 1.1.1.3.2
Rút gọn tử số.
Bước 1.1.1.3.2.1
Kết hợp các số hạng đối nhau trong .
Bước 1.1.1.3.2.1.1
Trừ khỏi .
Bước 1.1.1.3.2.1.2
Trừ khỏi .
Bước 1.1.1.3.2.2
Nhân với .
Bước 1.1.1.3.2.3
Trừ khỏi .
Bước 1.1.1.3.3
Di chuyển dấu trừ ra phía trước của phân số.
Bước 1.1.2
Tìm đạo hàm bậc hai.
Bước 1.1.2.1
Tìm đạo hàm bằng cách sử dụng Quy tắc nhân với hằng số.
Bước 1.1.2.1.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.1.2.1.2
Áp dụng các quy tắc số mũ cơ bản.
Bước 1.1.2.1.2.1
Viết lại ở dạng .
Bước 1.1.2.1.2.2
Nhân các số mũ trong .
Bước 1.1.2.1.2.2.1
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 1.1.2.1.2.2.2
Nhân với .
Bước 1.1.2.2
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng là trong đó và .
Bước 1.1.2.2.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 1.1.2.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.1.2.2.3
Thay thế tất cả các lần xuất hiện của với .
Bước 1.1.2.3
Tìm đạo hàm.
Bước 1.1.2.3.1
Nhân với .
Bước 1.1.2.3.2
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 1.1.2.3.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.1.2.3.4
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 1.1.2.3.5
Rút gọn biểu thức.
Bước 1.1.2.3.5.1
Cộng và .
Bước 1.1.2.3.5.2
Nhân với .
Bước 1.1.2.4
Rút gọn.
Bước 1.1.2.4.1
Viết lại biểu thức bằng quy tắc số mũ âm .
Bước 1.1.2.4.2
Kết hợp và .
Bước 1.1.3
Đạo hàm bậc hai của đối với là .
Bước 1.2
Đặt đạo hàm bậc hai bằng sau đó giải phương trình .
Bước 1.2.1
Đặt đạo hàm bậc hai bằng .
Bước 1.2.2
Cho tử bằng không.
Bước 1.2.3
Vì , nên không có đáp án.
Không có đáp án
Không có đáp án
Không có đáp án
Bước 2
Bước 2.1
Đặt mẫu số trong bằng để tìm nơi biểu thức không xác định.
Bước 2.2
Cộng cho cả hai vế của phương trình.
Bước 2.3
Tập xác định là tất cả các giá trị của và làm cho biểu thức xác định.
Ký hiệu khoảng:
Ký hiệu xây dựng tập hợp:
Ký hiệu khoảng:
Ký hiệu xây dựng tập hợp:
Bước 3
Tạo các khoảng quanh giá trị có đạo hàm bậc hai bằng không hoặc không xác định.
Bước 4
Bước 4.1
Thay thế biến bằng trong biểu thức.
Bước 4.2
Rút gọn kết quả.
Bước 4.2.1
Rút gọn mẫu số.
Bước 4.2.1.1
Trừ khỏi .
Bước 4.2.1.2
Nâng lên lũy thừa .
Bước 4.2.2
Chia cho .
Bước 4.2.3
Câu trả lời cuối cùng là .
Bước 4.3
Đồ thị lồi trên khoảng vì âm.
Lồi trên vì âm
Lồi trên vì âm
Bước 5
Bước 5.1
Thay thế biến bằng trong biểu thức.
Bước 5.2
Rút gọn kết quả.
Bước 5.2.1
Rút gọn mẫu số.
Bước 5.2.1.1
Trừ khỏi .
Bước 5.2.1.2
Nâng lên lũy thừa .
Bước 5.2.2
Chia cho .
Bước 5.2.3
Câu trả lời cuối cùng là .
Bước 5.3
Đồ thị lõm trong khoảng vì dương.
Lõm trên vì dương
Lõm trên vì dương
Bước 6
Đồ thị lồi khi đạo hàm bậc hai âm và lõm khi đạo hàm bậc hai dương.
Lồi trên vì âm
Lõm trên vì dương
Bước 7