Giải tích Ví dụ

Ước Tính Tích Phân tích phân từ 0 đến 5 của x/(x^2+10) đối với x
Bước 1
Giả sử . Sau đó , nên . Viết lại bằng .
Nhấp để xem thêm các bước...
Bước 1.1
Hãy đặt . Tìm .
Nhấp để xem thêm các bước...
Bước 1.1.1
Tính đạo hàm .
Bước 1.1.2
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 1.1.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.1.4
là hằng số đối với , đạo hàm của đối với .
Bước 1.1.5
Cộng .
Bước 1.2
Thay giới hạn dưới vào cho trong .
Bước 1.3
Rút gọn.
Nhấp để xem thêm các bước...
Bước 1.3.1
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 1.3.2
Cộng .
Bước 1.4
Thay giới hạn trên vào cho trong .
Bước 1.5
Rút gọn.
Nhấp để xem thêm các bước...
Bước 1.5.1
Nâng lên lũy thừa .
Bước 1.5.2
Cộng .
Bước 1.6
Các giá trị tìm được cho sẽ được sử dụng để tính tích phân xác định.
Bước 1.7
Viết lại bài tập bằng cách dùng , , và các giới hạn mới của phép tích phân.
Bước 2
Rút gọn.
Nhấp để xem thêm các bước...
Bước 2.1
Nhân với .
Bước 2.2
Di chuyển sang phía bên trái của .
Bước 3
không đổi đối với , hãy di chuyển ra khỏi tích phân.
Bước 4
Tích phân của đối với .
Bước 5
Tính tại và tại .
Bước 6
Rút gọn.
Nhấp để xem thêm các bước...
Bước 6.1
Sử dụng tính chất thương của logarit, .
Bước 6.2
Kết hợp .
Bước 7
Rút gọn.
Nhấp để xem thêm các bước...
Bước 7.1
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa .
Bước 7.2
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa .
Bước 7.3
Triệt tiêu thừa số chung của .
Nhấp để xem thêm các bước...
Bước 7.3.1
Đưa ra ngoài .
Bước 7.3.2
Triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 7.3.2.1
Đưa ra ngoài .
Bước 7.3.2.2
Triệt tiêu thừa số chung.
Bước 7.3.2.3
Viết lại biểu thức.
Bước 8
Kết quả có thể được hiển thị ở nhiều dạng.
Dạng chính xác:
Dạng thập phân:
Bước 9