Nhập bài toán...
Giải tích Ví dụ
Bước 1
Bước 1.1
Lấy giới hạn của tử số và giới hạn của mẫu số.
Bước 1.2
Tính giới hạn của tử số.
Bước 1.2.1
Tính giới hạn.
Bước 1.2.1.1
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 1.2.1.2
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 1.2.1.3
Di chuyển giới hạn vào trong hàm lượng giác vì cosin liên tục.
Bước 1.2.2
Tính giới hạn của bằng cách điền vào cho .
Bước 1.2.3
Rút gọn kết quả.
Bước 1.2.3.1
Rút gọn mỗi số hạng.
Bước 1.2.3.1.1
Giá trị chính xác của là .
Bước 1.2.3.1.2
Nhân với .
Bước 1.2.3.2
Trừ khỏi .
Bước 1.3
Tính giới hạn của mẫu số.
Bước 1.3.1
Di chuyển giới hạn vào trong hàm lượng giác vì sin liên tục.
Bước 1.3.2
Tính giới hạn của bằng cách điền vào cho .
Bước 1.3.3
Giá trị chính xác của là .
Bước 1.3.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 1.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 2
Vì ở dạng không xác định, nên ta áp dụng quy tắc L'Hôpital. Quy tắc L'Hôpital khẳng định rằng giới hạn của một thương của các hàm số bằng giới hạn của thương của các đạo hàm của chúng.
Bước 3
Bước 3.1
Tính đạo hàm tử số và mẫu số.
Bước 3.2
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 3.3
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 3.4
Tính .
Bước 3.4.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 3.4.2
Đạo hàm của đối với là .
Bước 3.4.3
Nhân với .
Bước 3.4.4
Nhân với .
Bước 3.5
Cộng và .
Bước 3.6
Đạo hàm của đối với là .
Bước 4
Quy đổi từ sang .
Bước 5
Di chuyển giới hạn vào trong hàm lượng giác vì tang liên tục.
Bước 6
Tính giới hạn của bằng cách điền vào cho .
Bước 7
Giá trị chính xác của là .