Nhập bài toán...
Giải tích Ví dụ
Bước 1
Bước 1.1
Lấy giới hạn của tử số và giới hạn của mẫu số.
Bước 1.2
Tính giới hạn của tử số.
Bước 1.2.1
Tính giới hạn.
Bước 1.2.1.1
Chuyển giới hạn vào bên trong logarit.
Bước 1.2.1.2
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 1.2.1.3
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 1.2.2
Tính giới hạn của bằng cách điền vào cho .
Bước 1.2.3
Rút gọn kết quả.
Bước 1.2.3.1
Cộng và .
Bước 1.2.3.2
Logarit tự nhiên của là .
Bước 1.3
Tính giới hạn của bằng cách điền vào cho .
Bước 1.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 2
Vì ở dạng không xác định, nên ta áp dụng quy tắc L'Hôpital. Quy tắc L'Hôpital khẳng định rằng giới hạn của một thương của các hàm số bằng giới hạn của thương của các đạo hàm của chúng.
Bước 3
Bước 3.1
Tính đạo hàm tử số và mẫu số.
Bước 3.2
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng là trong đó và .
Bước 3.2.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 3.2.2
Đạo hàm của đối với là .
Bước 3.2.3
Thay thế tất cả các lần xuất hiện của với .
Bước 3.3
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 3.4
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 3.5
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 3.6
Cộng và .
Bước 3.7
Nhân với .
Bước 3.8
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 4
Nhân tử số với nghịch đảo của mẫu số.
Bước 5
Bước 5.1
Nhân với .
Bước 5.2
Tách giới hạn bằng quy tắc thương số của giới hạn trên giới hạn khi tiến dần đến .
Bước 5.3
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 5.4
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 5.5
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 6
Tính giới hạn của bằng cách điền vào cho .
Bước 7
Bước 7.1
Cộng và .
Bước 7.2
Chia cho .