Giải tích Ví dụ

Tìm Đường Tiếp Tuyến Ngang y=x^3+6x
Bước 1
Thiết lập ở dạng một hàm số của .
Bước 2
Tìm đạo hàm.
Nhấp để xem thêm các bước...
Bước 2.1
Tìm đạo hàm.
Nhấp để xem thêm các bước...
Bước 2.1.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 2.1.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.2
Tính .
Nhấp để xem thêm các bước...
Bước 2.2.1
không đổi đối với , nên đạo hàm của đối với .
Bước 2.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.2.3
Nhân với .
Bước 3
Đặt đạo hàm bằng sau đó giải phương trình .
Nhấp để xem thêm các bước...
Bước 3.1
Trừ khỏi cả hai vế của phương trình.
Bước 3.2
Chia mỗi số hạng trong cho và rút gọn.
Nhấp để xem thêm các bước...
Bước 3.2.1
Chia mỗi số hạng trong cho .
Bước 3.2.2
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 3.2.2.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 3.2.2.1.1
Triệt tiêu thừa số chung.
Bước 3.2.2.1.2
Chia cho .
Bước 3.2.3
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 3.2.3.1
Chia cho .
Bước 3.3
Lấy căn đã chỉ định của cả hai vế của phương trình để loại bỏ số mũ ở vế trái.
Bước 3.4
Rút gọn .
Nhấp để xem thêm các bước...
Bước 3.4.1
Viết lại ở dạng .
Bước 3.4.2
Viết lại ở dạng .
Bước 3.4.3
Viết lại ở dạng .
Bước 3.5
Đáp án hoàn chỉnh là kết quả của cả hai phần dương và âm của đáp án.
Nhấp để xem thêm các bước...
Bước 3.5.1
Đầu tiên, sử dụng giá trị dương của để tìm đáp án đầu tiên.
Bước 3.5.2
Tiếp theo, sử dụng giá trị âm của để tìm đáp án thứ hai.
Bước 3.5.3
Đáp án hoàn chỉnh là kết quả của cả hai phần dương và âm của đáp án.
Bước 4
Không tìm được tiếp tuyến tại một điểm ảo. Điểm tại không tồn tại trên hệ tọa độ thực.
Không tìm được tiếp tuyến từ nghiệm
Bước 5
There are no horizontal tangent lines on the function .
No horizontal tangent lines
Bước 6