Giải tích Ví dụ

Tìm Cực Đại Địa Phương và Cực Tiểu Địa Phương f(x)=1/x+ logarit tự nhiên của x
Bước 1
Tìm đạo hàm bậc một của hàm số.
Nhấp để xem thêm các bước...
Bước 1.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 1.2
Tính .
Nhấp để xem thêm các bước...
Bước 1.2.1
Viết lại ở dạng .
Bước 1.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.3
Đạo hàm của đối với .
Bước 1.4
Rút gọn.
Nhấp để xem thêm các bước...
Bước 1.4.1
Viết lại biểu thức bằng quy tắc số mũ âm .
Bước 1.4.2
Sắp xếp lại các số hạng.
Bước 2
Tìm đạo hàm bậc hai của hàm số.
Nhấp để xem thêm các bước...
Bước 2.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 2.2
Tính .
Nhấp để xem thêm các bước...
Bước 2.2.1
Viết lại ở dạng .
Bước 2.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.3
Tính .
Nhấp để xem thêm các bước...
Bước 2.3.1
Tìm đạo hàm bằng cách sử dụng quy tắc tích số, quy tắc nói rằng trong đó .
Bước 2.3.2
Viết lại ở dạng .
Bước 2.3.3
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng trong đó .
Nhấp để xem thêm các bước...
Bước 2.3.3.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 2.3.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.3.3.3
Thay thế tất cả các lần xuất hiện của với .
Bước 2.3.4
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.3.5
là hằng số đối với , đạo hàm của đối với .
Bước 2.3.6
Nhân các số mũ trong .
Nhấp để xem thêm các bước...
Bước 2.3.6.1
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 2.3.6.2
Nhân với .
Bước 2.3.7
Nhân với .
Bước 2.3.8
Nâng lên lũy thừa .
Bước 2.3.9
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 2.3.10
Trừ khỏi .
Bước 2.3.11
Nhân với .
Bước 2.3.12
Nhân với .
Bước 2.3.13
Cộng .
Bước 2.4
Viết lại biểu thức bằng quy tắc số mũ âm .
Bước 2.5
Viết lại biểu thức bằng quy tắc số mũ âm .
Bước 2.6
Kết hợp .
Bước 3
Để tìm các giá trị cực đại địa phương và cực tiểu địa phương của hàm số, đặt đạo hàm bằng và giải.
Bước 4
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 4.1
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 4.1.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 4.1.2
Tính .
Nhấp để xem thêm các bước...
Bước 4.1.2.1
Viết lại ở dạng .
Bước 4.1.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 4.1.3
Đạo hàm của đối với .
Bước 4.1.4
Rút gọn.
Nhấp để xem thêm các bước...
Bước 4.1.4.1
Viết lại biểu thức bằng quy tắc số mũ âm .
Bước 4.1.4.2
Sắp xếp lại các số hạng.
Bước 4.2
Đạo hàm bậc nhất của đối với .
Bước 5
Cho đạo hàm bằng rồi giải phương trình .
Nhấp để xem thêm các bước...
Bước 5.1
Cho đạo hàm bằng .
Bước 5.2
Tìm mẫu số chung nhỏ nhất của các số hạng trong phương trình.
Nhấp để xem thêm các bước...
Bước 5.2.1
Tìm MCNN của các giá trị cũng giống như tìm BCNN của các mẫu số của các giá trị đó.
Bước 5.2.2
chứa cả số và biến nên cần thực hiện hai bước để tìm BCNN. Tìm BCNN cho phần số sau đó tìm BCNN cho phần biến .
Bước 5.2.3
BCNN là số dương nhỏ nhất mà tất cả các số chia đều cho nó.
1. Liệt kê các thừa số nguyên tố của từng số.
2. Nhân mỗi thừa số với số lần xuất hiện nhiều nhất của nó ở một trong các số.
Bước 5.2.4
Số không phải là một số nguyên tố vì nó chỉ có một thừa số dương, cũng là chính nó.
Không phải là số nguyên tố
Bước 5.2.5
BCNN của là kết quả của việc nhân tất cả các thừa số nguyên tố với số lần lớn nhất chúng xảy ra trong cả hai số.
Bước 5.2.6
Thừa số cho là chính nó .
xảy ra lần.
Bước 5.2.7
Các thừa số cho , chính là nhân với nhau lần.
xảy ra lần.
Bước 5.2.8
BCNN của là kết quả của việc nhân tất cả các thừa số nguyên tố với số lần lớn nhất chúng xảy ra trong cả hai số hạng.
Bước 5.2.9
Nhân với .
Bước 5.3
Nhân mỗi số hạng trong với để loại bỏ các phân số.
Nhấp để xem thêm các bước...
Bước 5.3.1
Nhân mỗi số hạng trong với .
Bước 5.3.2
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 5.3.2.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 5.3.2.1.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 5.3.2.1.1.1
Đưa ra ngoài .
Bước 5.3.2.1.1.2
Triệt tiêu thừa số chung.
Bước 5.3.2.1.1.3
Viết lại biểu thức.
Bước 5.3.2.1.2
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 5.3.2.1.2.1
Di chuyển dấu âm đầu tiên trong vào tử số.
Bước 5.3.2.1.2.2
Triệt tiêu thừa số chung.
Bước 5.3.2.1.2.3
Viết lại biểu thức.
Bước 5.3.3
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 5.3.3.1
Nhân với .
Bước 5.4
Cộng cho cả hai vế của phương trình.
Bước 6
Tìm các giá trị có đạo hàm tại đó không xác định.
Nhấp để xem thêm các bước...
Bước 6.1
Đặt mẫu số trong bằng để tìm nơi biểu thức không xác định.
Bước 6.2
Đặt mẫu số trong bằng để tìm nơi biểu thức không xác định.
Bước 6.3
Giải tìm .
Nhấp để xem thêm các bước...
Bước 6.3.1
Lấy căn đã chỉ định của cả hai vế của phương trình để loại bỏ số mũ ở vế trái.
Bước 6.3.2
Rút gọn .
Nhấp để xem thêm các bước...
Bước 6.3.2.1
Viết lại ở dạng .
Bước 6.3.2.2
Đưa các số hạng dưới dấu căn ra ngoài, giả sử đó là các số thực dương.
Bước 6.3.2.3
Cộng hoặc trừ .
Bước 7
Các điểm cực trị cần tính.
Bước 8
Tính đạo hàm bậc hai tại . Nếu đạo hàm bậc hai dương, thì đây là một cực tiểu địa phương. Nếu nó âm, thì đây là một cực đại địa phương.
Bước 9
Tính đạo hàm bậc hai.
Nhấp để xem thêm các bước...
Bước 9.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 9.1.1
Một mũ bất kỳ số nào là một.
Bước 9.1.2
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 9.1.2.1
Triệt tiêu thừa số chung.
Bước 9.1.2.2
Viết lại biểu thức.
Bước 9.1.3
Nhân với .
Bước 9.1.4
Một mũ bất kỳ số nào là một.
Bước 9.1.5
Chia cho .
Bước 9.2
Cộng .
Bước 10
là một cực tiểu địa phương vì giá trị của đạo hàm bậc hai dương. Đây được gọi là phép kiểm định đạo hàm bậc hai.
là cực tiểu địa phương
Bước 11
Tìm giá trị y khi .
Nhấp để xem thêm các bước...
Bước 11.1
Thay thế biến bằng trong biểu thức.
Bước 11.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 11.2.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 11.2.1.1
Chia cho .
Bước 11.2.1.2
Logarit tự nhiên của .
Bước 11.2.2
Cộng .
Bước 11.2.3
Câu trả lời cuối cùng là .
Bước 12
Đây là những cực trị địa phương cho .
là một cực tiểu địa phương
Bước 13