Giải tích Ví dụ

Tìm Các Điểm Uốn f(x)=x^3-3x
Bước 1
Tìm đạo hàm bậc hai.
Nhấp để xem thêm các bước...
Bước 1.1
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 1.1.1
Tìm đạo hàm.
Nhấp để xem thêm các bước...
Bước 1.1.1.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 1.1.1.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.1.2
Tính .
Nhấp để xem thêm các bước...
Bước 1.1.2.1
không đổi đối với , nên đạo hàm của đối với .
Bước 1.1.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.1.2.3
Nhân với .
Bước 1.2
Tìm đạo hàm bậc hai.
Nhấp để xem thêm các bước...
Bước 1.2.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 1.2.2
Tính .
Nhấp để xem thêm các bước...
Bước 1.2.2.1
không đổi đối với , nên đạo hàm của đối với .
Bước 1.2.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.2.2.3
Nhân với .
Bước 1.2.3
Tìm đạo hàm bằng quy tắc hằng số.
Nhấp để xem thêm các bước...
Bước 1.2.3.1
là hằng số đối với , đạo hàm của đối với .
Bước 1.2.3.2
Cộng .
Bước 1.3
Đạo hàm bậc hai của đối với .
Bước 2
Đặt đạo hàm bậc hai bằng sau đó giải phương trình .
Nhấp để xem thêm các bước...
Bước 2.1
Đặt đạo hàm bậc hai bằng .
Bước 2.2
Chia mỗi số hạng trong cho và rút gọn.
Nhấp để xem thêm các bước...
Bước 2.2.1
Chia mỗi số hạng trong cho .
Bước 2.2.2
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 2.2.2.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 2.2.2.1.1
Triệt tiêu thừa số chung.
Bước 2.2.2.1.2
Chia cho .
Bước 2.2.3
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 2.2.3.1
Chia cho .
Bước 3
Tìm các điểm mà tại đó đạo hàm bậc hai là .
Nhấp để xem thêm các bước...
Bước 3.1
Thay trong để tìm giá trị của .
Nhấp để xem thêm các bước...
Bước 3.1.1
Thay thế biến bằng trong biểu thức.
Bước 3.1.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 3.1.2.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 3.1.2.1.1
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 3.1.2.1.2
Nhân với .
Bước 3.1.2.2
Cộng .
Bước 3.1.2.3
Câu trả lời cuối cùng là .
Bước 3.2
Tìm điểm bằng cách thay thế trong . Điểm này có thể là một điểm uốn.
Bước 4
Tách thành các khoảng xung quanh các điểm có khả năng là các điểm uốn.
Bước 5
Thay một giá trị từ khoảng vào đạo hàm bậc hai để xác định xem hàm số tăng hay giảm.
Nhấp để xem thêm các bước...
Bước 5.1
Thay thế biến bằng trong biểu thức.
Bước 5.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 5.2.1
Nhân với .
Bước 5.2.2
Câu trả lời cuối cùng là .
Bước 5.3
Tại , đạo hàm bậc hai là . Bởi vì đây là số âm, đạo hàm bậc hai giảm trên khoảng
Giảm trên
Giảm trên
Bước 6
Thay một giá trị từ khoảng vào đạo hàm bậc hai để xác định xem hàm số tăng hay giảm.
Nhấp để xem thêm các bước...
Bước 6.1
Thay thế biến bằng trong biểu thức.
Bước 6.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 6.2.1
Nhân với .
Bước 6.2.2
Câu trả lời cuối cùng là .
Bước 6.3
Tại , đạo hàm bậc hai là . Vì số này dương, đạo hàm bậc hai tăng trên khoảng .
Tăng trên
Tăng trên
Bước 7
Điểm uốn là điểm nằm trên đường cong mà tại đó độ lõm đổi dấu từ cộng sang trừ hoặc từ trừ sang cộng. Điểm uốn trong trường hợp này là .
Bước 8