Giải tích Ví dụ

Tìm Các Điểm Cực Trị sin(x)
Bước 1
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 1.1
Đạo hàm của đối với .
Bước 1.2
Đạo hàm bậc nhất của đối với .
Bước 2
Cho đạo hàm bằng rồi giải phương trình .
Nhấp để xem thêm các bước...
Bước 2.1
Cho đạo hàm bằng .
Bước 2.2
Lấy cosin nghịch đảo của cả hai vế của phương trình để trích xuất từ trong cosin.
Bước 2.3
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 2.3.1
Giá trị chính xác của .
Bước 2.4
Hàm cosin dương ở góc phần tư thứ nhất và thứ tư. Để tìm đáp án thứ hai, hãy trừ góc tham chiếu khỏi để tìm đáp án trong góc phần tư thứ tư.
Bước 2.5
Rút gọn .
Nhấp để xem thêm các bước...
Bước 2.5.1
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 2.5.2
Kết hợp các phân số.
Nhấp để xem thêm các bước...
Bước 2.5.2.1
Kết hợp .
Bước 2.5.2.2
Kết hợp các tử số trên mẫu số chung.
Bước 2.5.3
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 2.5.3.1
Nhân với .
Bước 2.5.3.2
Trừ khỏi .
Bước 2.6
Tìm chu kỳ của .
Nhấp để xem thêm các bước...
Bước 2.6.1
Chu kỳ của hàm số có thể được tính bằng .
Bước 2.6.2
Thay thế với trong công thức cho chu kỳ.
Bước 2.6.3
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa .
Bước 2.6.4
Chia cho .
Bước 2.7
Chu kỳ của hàm nên các giá trị sẽ lặp lại sau mỗi radian theo cả hai hướng.
, cho mọi số nguyên
Bước 2.8
Hợp nhất các câu trả lời.
, cho mọi số nguyên
, cho mọi số nguyên
Bước 3
Tìm các giá trị có đạo hàm tại đó không xác định.
Nhấp để xem thêm các bước...
Bước 3.1
Tập xác định của biểu thức là tất cả các số thực trừ trường hợp biểu thức không xác định. Trong trường hợp này, không có số thực nào làm cho biểu thức không xác định.
Bước 4
Tính tại các giá trị có đạo hàm bằng hoặc không xác định.
Nhấp để xem thêm các bước...
Bước 4.1
Tính giá trị tại .
Nhấp để xem thêm các bước...
Bước 4.1.1
Thay bằng .
Bước 4.1.2
Giá trị chính xác của .
Bước 4.2
Tính giá trị tại .
Nhấp để xem thêm các bước...
Bước 4.2.1
Thay bằng .
Bước 4.2.2
Rút gọn.
Nhấp để xem thêm các bước...
Bước 4.2.2.1
Áp dụng góc tham chiếu bằng cách tìm góc có các giá trị lượng giác tương đương trong góc phần tư thứ nhất. Làm cho biểu thức âm vì sin âm trong góc phần tư thứ tư.
Bước 4.2.2.2
Giá trị chính xác của .
Bước 4.2.2.3
Nhân với .
Bước 4.3
Liệt kê tất cả các điểm.
, cho mọi số nguyên
, cho mọi số nguyên
Bước 5