Nhập bài toán...
Giải tích Ví dụ
Bước 1
Viết ở dạng một hàm số.
Bước 2
Bước 2.1
Tìm đạo hàm.
Bước 2.1.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 2.1.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 2.2
Tính .
Bước 2.2.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 2.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 2.2.3
Nhân với .
Bước 2.3
Tính .
Bước 2.3.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 2.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 2.3.3
Nhân với .
Bước 3
Bước 3.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 3.2
Tính .
Bước 3.2.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 3.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 3.2.3
Nhân với .
Bước 3.3
Tính .
Bước 3.3.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 3.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 3.3.3
Nhân với .
Bước 3.4
Tìm đạo hàm bằng quy tắc hằng số.
Bước 3.4.1
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 3.4.2
Cộng và .
Bước 4
Để tìm các giá trị cực đại địa phương và cực tiểu địa phương của hàm số, đặt đạo hàm bằng và giải.
Bước 5
Bước 5.1
Tìm đạo hàm bậc một.
Bước 5.1.1
Tìm đạo hàm.
Bước 5.1.1.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 5.1.1.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 5.1.2
Tính .
Bước 5.1.2.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 5.1.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 5.1.2.3
Nhân với .
Bước 5.1.3
Tính .
Bước 5.1.3.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 5.1.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 5.1.3.3
Nhân với .
Bước 5.2
Đạo hàm bậc nhất của đối với là .
Bước 6
Bước 6.1
Cho đạo hàm bằng .
Bước 6.2
Phân tích vế trái của phương trình thành thừa số.
Bước 6.2.1
Đưa ra ngoài .
Bước 6.2.1.1
Đưa ra ngoài .
Bước 6.2.1.2
Đưa ra ngoài .
Bước 6.2.1.3
Đưa ra ngoài .
Bước 6.2.1.4
Đưa ra ngoài .
Bước 6.2.1.5
Đưa ra ngoài .
Bước 6.2.2
Phân tích thành thừa số.
Bước 6.2.2.1
Phân tích thành thừa số bằng phương pháp AC.
Bước 6.2.2.1.1
Xét dạng . Tìm một cặp số nguyên mà tích số của chúng là và tổng của chúng là . Trong trường hợp này, tích số của chúng là và tổng của chúng là .
Bước 6.2.2.1.2
Viết dạng đã được phân tích thành thừa số bằng các số nguyên này.
Bước 6.2.2.2
Loại bỏ các dấu ngoặc đơn không cần thiết.
Bước 6.3
Nếu bất kỳ thừa số riêng lẻ nào ở vế trái của phương trình bằng , toàn bộ biểu thức sẽ bằng .
Bước 6.4
Đặt bằng và giải tìm .
Bước 6.4.1
Đặt bằng với .
Bước 6.4.2
Cộng cho cả hai vế của phương trình.
Bước 6.5
Đặt bằng và giải tìm .
Bước 6.5.1
Đặt bằng với .
Bước 6.5.2
Trừ khỏi cả hai vế của phương trình.
Bước 6.6
Đáp án cuối cùng là tất cả các giá trị làm cho đúng.
Bước 7
Bước 7.1
Tập xác định của biểu thức là tất cả các số thực trừ trường hợp biểu thức không xác định. Trong trường hợp này, không có số thực nào làm cho biểu thức không xác định.
Bước 8
Các điểm cực trị cần tính.
Bước 9
Tính đạo hàm bậc hai tại . Nếu đạo hàm bậc hai dương, thì đây là một cực tiểu địa phương. Nếu nó âm, thì đây là một cực đại địa phương.
Bước 10
Bước 10.1
Nhân với .
Bước 10.2
Trừ khỏi .
Bước 11
là một cực tiểu địa phương vì giá trị của đạo hàm bậc hai dương. Đây được gọi là phép kiểm định đạo hàm bậc hai.
là cực tiểu địa phương
Bước 12
Bước 12.1
Thay thế biến bằng trong biểu thức.
Bước 12.2
Rút gọn kết quả.
Bước 12.2.1
Rút gọn mỗi số hạng.
Bước 12.2.1.1
Nâng lên lũy thừa .
Bước 12.2.1.2
Nâng lên lũy thừa .
Bước 12.2.1.3
Nhân với .
Bước 12.2.1.4
Nhân với .
Bước 12.2.2
Rút gọn bằng cách trừ các số.
Bước 12.2.2.1
Trừ khỏi .
Bước 12.2.2.2
Trừ khỏi .
Bước 12.2.3
Câu trả lời cuối cùng là .
Bước 13
Tính đạo hàm bậc hai tại . Nếu đạo hàm bậc hai dương, thì đây là một cực tiểu địa phương. Nếu nó âm, thì đây là một cực đại địa phương.
Bước 14
Bước 14.1
Nhân với .
Bước 14.2
Trừ khỏi .
Bước 15
là một cực đại địa phương vì giá trị của đạo hàm bậc hai âm. Đây được gọi là phép kiểm định đạo hàm bậc hai.
là cực đại địa phương
Bước 16
Bước 16.1
Thay thế biến bằng trong biểu thức.
Bước 16.2
Rút gọn kết quả.
Bước 16.2.1
Rút gọn mỗi số hạng.
Bước 16.2.1.1
Nâng lên lũy thừa .
Bước 16.2.1.2
Nâng lên lũy thừa .
Bước 16.2.1.3
Nhân với .
Bước 16.2.1.4
Nhân với .
Bước 16.2.2
Rút gọn bằng cách cộng và trừ.
Bước 16.2.2.1
Trừ khỏi .
Bước 16.2.2.2
Cộng và .
Bước 16.2.3
Câu trả lời cuối cùng là .
Bước 17
Đây là những cực trị địa phương cho .
là một cực tiểu địa phương
là một cực đại địa phuơng
Bước 18