Giải tích Ví dụ

Ước tính Giới Hạn giới hạn khi x tiến dần đến pi/2 của (cos(x))/(1-sin(x))
Bước 1
Áp dụng quy tắc l'Hôpital
Nhấp để xem thêm các bước...
Bước 1.1
Tính giới hạn của tử số và giới hạn của mẫu số.
Nhấp để xem thêm các bước...
Bước 1.1.1
Lấy giới hạn của tử số và giới hạn của mẫu số.
Bước 1.1.2
Tính giới hạn của tử số.
Nhấp để xem thêm các bước...
Bước 1.1.2.1
Di chuyển giới hạn vào trong hàm lượng giác vì cosin liên tục.
Bước 1.1.2.2
Tính giới hạn của bằng cách điền vào cho .
Bước 1.1.2.3
Giá trị chính xác của .
Bước 1.1.3
Tính giới hạn của mẫu số.
Nhấp để xem thêm các bước...
Bước 1.1.3.1
Tính giới hạn.
Nhấp để xem thêm các bước...
Bước 1.1.3.1.1
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 1.1.3.1.2
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 1.1.3.1.3
Di chuyển giới hạn vào trong hàm lượng giác vì sin liên tục.
Bước 1.1.3.2
Tính giới hạn của bằng cách điền vào cho .
Bước 1.1.3.3
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 1.1.3.3.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 1.1.3.3.1.1
Giá trị chính xác của .
Bước 1.1.3.3.1.2
Nhân với .
Bước 1.1.3.3.2
Trừ khỏi .
Bước 1.1.3.3.3
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 1.1.3.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 1.1.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 1.2
ở dạng không xác định, nên ta áp dụng quy tắc L'Hôpital. Quy tắc L'Hôpital khẳng định rằng giới hạn của một thương của các hàm số bằng giới hạn của thương của các đạo hàm của chúng.
Bước 1.3
Tìm đạo hàm của tử số và mẫu số.
Nhấp để xem thêm các bước...
Bước 1.3.1
Tính đạo hàm tử số và mẫu số.
Bước 1.3.2
Đạo hàm của đối với .
Bước 1.3.3
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 1.3.4
là hằng số đối với , đạo hàm của đối với .
Bước 1.3.5
Tính .
Nhấp để xem thêm các bước...
Bước 1.3.5.1
không đổi đối với , nên đạo hàm của đối với .
Bước 1.3.5.2
Đạo hàm của đối với .
Bước 1.3.6
Trừ khỏi .
Bước 1.4
Chia hai giá trị âm cho nhau sẽ có kết quả là một giá trị dương.
Bước 2
Vì hàm số tiến dần đến từ phía bên trái và từ phía bên phải, nên giới hạn không tồn tại.