Nhập bài toán...
Giải tích Ví dụ
Bước 1
Bước 1.1
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng là trong đó và .
Bước 1.1.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 1.1.2
Tìm đạo hàm bằng cách sử dụng Quy tắc mũ, quy tắc nói rằng là trong đó =.
Bước 1.1.3
Thay thế tất cả các lần xuất hiện của với .
Bước 1.2
Tìm đạo hàm.
Bước 1.2.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 1.2.2
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 1.2.3
Cộng và .
Bước 1.2.4
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.2.5
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.2.6
Nhân với .
Bước 1.2.7
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.2.8
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.2.9
Nhân với .
Bước 2
Bước 2.1
Tìm đạo hàm bằng cách sử dụng quy tắc tích số, quy tắc nói rằng là trong đó và .
Bước 2.2
Tìm đạo hàm.
Bước 2.2.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 2.2.2
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 2.2.3
Cộng và .
Bước 2.2.4
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 2.2.5
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 2.2.6
Rút gọn biểu thức.
Bước 2.2.6.1
Nhân với .
Bước 2.2.6.2
Di chuyển sang phía bên trái của .
Bước 2.3
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng là trong đó và .
Bước 2.3.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 2.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc mũ, quy tắc nói rằng là trong đó =.
Bước 2.3.3
Thay thế tất cả các lần xuất hiện của với .
Bước 2.4
Tìm đạo hàm.
Bước 2.4.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 2.4.2
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 2.4.3
Cộng và .
Bước 2.4.4
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 2.4.5
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 2.4.6
Nhân với .
Bước 2.4.7
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 2.4.8
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 2.4.9
Nhân với .
Bước 2.5
Nâng lên lũy thừa .
Bước 2.6
Nâng lên lũy thừa .
Bước 2.7
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 2.8
Cộng và .
Bước 2.9
Sắp xếp lại các số hạng.
Bước 3
Để tìm các giá trị cực đại địa phương và cực tiểu địa phương của hàm số, đặt đạo hàm bằng và giải.
Bước 4
Bước 4.1
Tìm đạo hàm bậc một.
Bước 4.1.1
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng là trong đó và .
Bước 4.1.1.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 4.1.1.2
Tìm đạo hàm bằng cách sử dụng Quy tắc mũ, quy tắc nói rằng là trong đó =.
Bước 4.1.1.3
Thay thế tất cả các lần xuất hiện của với .
Bước 4.1.2
Tìm đạo hàm.
Bước 4.1.2.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 4.1.2.2
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 4.1.2.3
Cộng và .
Bước 4.1.2.4
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 4.1.2.5
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 4.1.2.6
Nhân với .
Bước 4.1.2.7
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 4.1.2.8
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 4.1.2.9
Nhân với .
Bước 4.2
Đạo hàm bậc nhất của đối với là .
Bước 5
Bước 5.1
Cho đạo hàm bằng .
Bước 5.2
Nếu bất kỳ thừa số riêng lẻ nào ở vế trái của phương trình bằng , toàn bộ biểu thức sẽ bằng .
Bước 5.3
Đặt bằng và giải tìm .
Bước 5.3.1
Đặt bằng với .
Bước 5.3.2
Giải để tìm .
Bước 5.3.2.1
Lấy logarit tự nhiên của cả hai vế của phương trình để loại bỏ biến khỏi số mũ.
Bước 5.3.2.2
Không thể giải phương trình vì không xác định.
Không xác định
Bước 5.3.2.3
Không có đáp án nào cho
Không có đáp án
Không có đáp án
Không có đáp án
Bước 5.4
Đặt bằng và giải tìm .
Bước 5.4.1
Đặt bằng với .
Bước 5.4.2
Giải để tìm .
Bước 5.4.2.1
Cộng cho cả hai vế của phương trình.
Bước 5.4.2.2
Chia mỗi số hạng trong cho và rút gọn.
Bước 5.4.2.2.1
Chia mỗi số hạng trong cho .
Bước 5.4.2.2.2
Rút gọn vế trái.
Bước 5.4.2.2.2.1
Triệt tiêu thừa số chung .
Bước 5.4.2.2.2.1.1
Triệt tiêu thừa số chung.
Bước 5.4.2.2.2.1.2
Chia cho .
Bước 5.4.2.2.3
Rút gọn vế phải.
Bước 5.4.2.2.3.1
Chia cho .
Bước 5.5
Đáp án cuối cùng là tất cả các giá trị làm cho đúng.
Bước 6
Bước 6.1
Tập xác định của biểu thức là tất cả các số thực trừ trường hợp biểu thức không xác định. Trong trường hợp này, không có số thực nào làm cho biểu thức không xác định.
Bước 7
Các điểm cực trị cần tính.
Bước 8
Tính đạo hàm bậc hai tại . Nếu đạo hàm bậc hai dương, thì đây là một cực tiểu địa phương. Nếu nó âm, thì đây là một cực đại địa phương.
Bước 9
Bước 9.1
Rút gọn mỗi số hạng.
Bước 9.1.1
Rút gọn mỗi số hạng.
Bước 9.1.1.1
Nhân với .
Bước 9.1.1.2
Nâng lên lũy thừa .
Bước 9.1.1.3
Nhân với .
Bước 9.1.2
Trừ khỏi .
Bước 9.1.3
Cộng và .
Bước 9.1.4
Viết lại biểu thức bằng quy tắc số mũ âm .
Bước 9.1.5
Nhân với .
Bước 9.1.6
Cộng và .
Bước 9.1.7
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 9.1.8
Nhân với .
Bước 9.1.9
Rút gọn mỗi số hạng.
Bước 9.1.9.1
Nhân với .
Bước 9.1.9.2
Nâng lên lũy thừa .
Bước 9.1.9.3
Nhân với .
Bước 9.1.10
Trừ khỏi .
Bước 9.1.11
Cộng và .
Bước 9.1.12
Viết lại biểu thức bằng quy tắc số mũ âm .
Bước 9.1.13
Kết hợp và .
Bước 9.2
Cộng và .
Bước 10
là một cực tiểu địa phương vì giá trị của đạo hàm bậc hai dương. Đây được gọi là phép kiểm định đạo hàm bậc hai.
là cực tiểu địa phương
Bước 11
Bước 11.1
Thay thế biến bằng trong biểu thức.
Bước 11.2
Rút gọn kết quả.
Bước 11.2.1
Rút gọn mỗi số hạng.
Bước 11.2.1.1
Nhân với .
Bước 11.2.1.2
Nâng lên lũy thừa .
Bước 11.2.1.3
Nhân với .
Bước 11.2.2
Rút gọn bằng cách cộng và trừ.
Bước 11.2.2.1
Trừ khỏi .
Bước 11.2.2.2
Cộng và .
Bước 11.2.3
Viết lại biểu thức bằng quy tắc số mũ âm .
Bước 11.2.4
Câu trả lời cuối cùng là .
Bước 12
Đây là những cực trị địa phương cho .
là một cực tiểu địa phương
Bước 13