Nhập bài toán...
Giải tích Ví dụ
,
Bước 1
Bước 1.1
Tìm đạo hàm bậc một.
Bước 1.1.1
Tìm đạo hàm bậc một.
Bước 1.1.1.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.1.1.2
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 1.1.1.3
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 1.1.1.4
Cộng và .
Bước 1.1.1.5
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.1.1.6
Nhân với .
Bước 1.1.1.7
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.1.1.8
Nhân với .
Bước 1.1.2
Đạo hàm bậc nhất của đối với là .
Bước 1.2
Cho đạo hàm bằng rồi giải phương trình .
Bước 1.2.1
Cho đạo hàm bằng .
Bước 1.2.2
Vì , nên không có đáp án.
Không có đáp án
Không có đáp án
Bước 1.3
Không có giá trị nào của trong tập xác định của bài toán ban đầu có đạo hàm bằng hoặc không xác định.
Không tìm được điểm cực trị nào
Không tìm được điểm cực trị nào
Bước 2
Bước 2.1
Tính giá trị tại .
Bước 2.1.1
Thay bằng .
Bước 2.1.2
Rút gọn.
Bước 2.1.2.1
Nhân với .
Bước 2.1.2.2
Cộng và .
Bước 2.1.2.3
Nhân với .
Bước 2.2
Tính giá trị tại .
Bước 2.2.1
Thay bằng .
Bước 2.2.2
Rút gọn.
Bước 2.2.2.1
Nhân với .
Bước 2.2.2.2
Trừ khỏi .
Bước 2.2.2.3
Nhân với .
Bước 2.3
Liệt kê tất cả các điểm.
Bước 3
So sánh các giá trị tìm được với mỗi giá trị của để xác định cực đại tuyệt đối và cực tiểu tuyệt đối trên khoảng đã cho. Cực đại sẽ xảy ra tại giá trị cao nhất và cực tiểu sẽ xảy ra tại giá trị thấp nhất.
Cực đại tuyệt đối:
Cực tiểu tuyệt đối:
Bước 4