Giải tích Ví dụ

Tìm Điểm Cực Đại Toàn Cục và Cực Tiểu Toàn Cục trong Khoảng f(x)=x^3-3x+1 on [0,2]
on
Bước 1
Tìm các điểm tới hạn.
Nhấp để xem thêm các bước...
Bước 1.1
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 1.1.1
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 1.1.1.1
Tìm đạo hàm.
Nhấp để xem thêm các bước...
Bước 1.1.1.1.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 1.1.1.1.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.1.1.2
Tính .
Nhấp để xem thêm các bước...
Bước 1.1.1.2.1
không đổi đối với , nên đạo hàm của đối với .
Bước 1.1.1.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.1.1.2.3
Nhân với .
Bước 1.1.1.3
Tìm đạo hàm bằng quy tắc hằng số.
Nhấp để xem thêm các bước...
Bước 1.1.1.3.1
là hằng số đối với , đạo hàm của đối với .
Bước 1.1.1.3.2
Cộng .
Bước 1.1.2
Đạo hàm bậc nhất của đối với .
Bước 1.2
Cho đạo hàm bằng rồi giải phương trình .
Nhấp để xem thêm các bước...
Bước 1.2.1
Cho đạo hàm bằng .
Bước 1.2.2
Cộng cho cả hai vế của phương trình.
Bước 1.2.3
Chia mỗi số hạng trong cho và rút gọn.
Nhấp để xem thêm các bước...
Bước 1.2.3.1
Chia mỗi số hạng trong cho .
Bước 1.2.3.2
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 1.2.3.2.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 1.2.3.2.1.1
Triệt tiêu thừa số chung.
Bước 1.2.3.2.1.2
Chia cho .
Bước 1.2.3.3
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 1.2.3.3.1
Chia cho .
Bước 1.2.4
Lấy căn đã chỉ định của cả hai vế của phương trình để loại bỏ số mũ ở vế trái.
Bước 1.2.5
Bất cứ nghiệm nào của đều là .
Bước 1.2.6
Đáp án hoàn chỉnh là kết quả của cả hai phần dương và âm của đáp án.
Nhấp để xem thêm các bước...
Bước 1.2.6.1
Đầu tiên, sử dụng giá trị dương của để tìm đáp án đầu tiên.
Bước 1.2.6.2
Tiếp theo, sử dụng giá trị âm của để tìm đáp án thứ hai.
Bước 1.2.6.3
Đáp án hoàn chỉnh là kết quả của cả hai phần dương và âm của đáp án.
Bước 1.3
Tìm các giá trị có đạo hàm tại đó không xác định.
Nhấp để xem thêm các bước...
Bước 1.3.1
Tập xác định của biểu thức là tất cả các số thực trừ trường hợp biểu thức không xác định. Trong trường hợp này, không có số thực nào làm cho biểu thức không xác định.
Bước 1.4
Tính tại các giá trị có đạo hàm bằng hoặc không xác định.
Nhấp để xem thêm các bước...
Bước 1.4.1
Tính giá trị tại .
Nhấp để xem thêm các bước...
Bước 1.4.1.1
Thay bằng .
Bước 1.4.1.2
Rút gọn.
Nhấp để xem thêm các bước...
Bước 1.4.1.2.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 1.4.1.2.1.1
Một mũ bất kỳ số nào là một.
Bước 1.4.1.2.1.2
Nhân với .
Bước 1.4.1.2.2
Rút gọn bằng cách cộng và trừ.
Nhấp để xem thêm các bước...
Bước 1.4.1.2.2.1
Trừ khỏi .
Bước 1.4.1.2.2.2
Cộng .
Bước 1.4.2
Tính giá trị tại .
Nhấp để xem thêm các bước...
Bước 1.4.2.1
Thay bằng .
Bước 1.4.2.2
Rút gọn.
Nhấp để xem thêm các bước...
Bước 1.4.2.2.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 1.4.2.2.1.1
Nâng lên lũy thừa .
Bước 1.4.2.2.1.2
Nhân với .
Bước 1.4.2.2.2
Rút gọn bằng cách cộng các số.
Nhấp để xem thêm các bước...
Bước 1.4.2.2.2.1
Cộng .
Bước 1.4.2.2.2.2
Cộng .
Bước 1.4.3
Liệt kê tất cả các điểm.
Bước 2
Bỏ các điểm không nằm trong khoảng đang xét ra.
Bước 3
Dùng phép kiểm định đạo hàm bậc nhất để xác định các điểm cực đại hoặc cực tiểu.
Nhấp để xem thêm các bước...
Bước 3.1
Chia thành các khoảng riêng biệt xung quanh các giá trị và làm cho đạo hàm bậc nhất hoặc không xác định.
Bước 3.2
Thay bất kỳ số nào, chẳng hạn như , từ khoảng trong đạo hàm đầu tiên để kiểm tra xem kết quả là âm hay dương.
Nhấp để xem thêm các bước...
Bước 3.2.1
Thay thế biến bằng trong biểu thức.
Bước 3.2.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 3.2.2.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 3.2.2.1.1
Nâng lên lũy thừa .
Bước 3.2.2.1.2
Nhân với .
Bước 3.2.2.2
Trừ khỏi .
Bước 3.2.2.3
Câu trả lời cuối cùng là .
Bước 3.3
Thay bất kỳ số nào, chẳng hạn như , từ khoảng trong đạo hàm đầu tiên để kiểm tra xem kết quả là âm hay dương.
Nhấp để xem thêm các bước...
Bước 3.3.1
Thay thế biến bằng trong biểu thức.
Bước 3.3.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 3.3.2.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 3.3.2.1.1
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 3.3.2.1.2
Nhân với .
Bước 3.3.2.2
Trừ khỏi .
Bước 3.3.2.3
Câu trả lời cuối cùng là .
Bước 3.4
Thay bất kỳ số nào, chẳng hạn như , từ khoảng trong đạo hàm đầu tiên để kiểm tra xem kết quả là âm hay dương.
Nhấp để xem thêm các bước...
Bước 3.4.1
Thay thế biến bằng trong biểu thức.
Bước 3.4.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 3.4.2.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 3.4.2.1.1
Nâng lên lũy thừa .
Bước 3.4.2.1.2
Nhân với .
Bước 3.4.2.2
Trừ khỏi .
Bước 3.4.2.3
Câu trả lời cuối cùng là .
Bước 3.5
Vì đạo hàm bậc nhất đổi dấu từ dương sang âm xung quanh , nên là một cực đại địa phương.
là cực đại địa phương
Bước 3.6
Vì đạo hàm bậc nhất đổi dấu từ âm sang dương xung quanh , nên là một cực tiểu địa phương.
là cực tiểu địa phương
Bước 3.7
Đây là những cực trị địa phương cho .
là cực đại địa phương
là cực tiểu địa phương
là cực đại địa phương
là cực tiểu địa phương
Bước 4
So sánh các giá trị tìm được với mỗi giá trị của để xác định cực đại tuyệt đối và cực tiểu tuyệt đối trên khoảng đã cho. Cực đại sẽ xảy ra tại giá trị cao nhất và cực tiểu sẽ xảy ra tại giá trị thấp nhất.
Không có cực đại tuyệt đối
Cực tiểu tuyệt đối:
Bước 5