Giải tích Ví dụ

Tìm Điểm Cực Đại Toàn Cục và Cực Tiểu Toàn Cục trong Khoảng y=7x+7sin(x) , 0<=x<=2pi
,
Bước 1
Tìm các điểm tới hạn.
Nhấp để xem thêm các bước...
Bước 1.1
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 1.1.1
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 1.1.1.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 1.1.1.2
Tính .
Nhấp để xem thêm các bước...
Bước 1.1.1.2.1
không đổi đối với , nên đạo hàm của đối với .
Bước 1.1.1.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.1.1.2.3
Nhân với .
Bước 1.1.1.3
Tính .
Nhấp để xem thêm các bước...
Bước 1.1.1.3.1
không đổi đối với , nên đạo hàm của đối với .
Bước 1.1.1.3.2
Đạo hàm của đối với .
Bước 1.1.2
Đạo hàm bậc nhất của đối với .
Bước 1.2
Cho đạo hàm bằng rồi giải phương trình .
Nhấp để xem thêm các bước...
Bước 1.2.1
Cho đạo hàm bằng .
Bước 1.2.2
Trừ khỏi cả hai vế của phương trình.
Bước 1.2.3
Chia mỗi số hạng trong cho và rút gọn.
Nhấp để xem thêm các bước...
Bước 1.2.3.1
Chia mỗi số hạng trong cho .
Bước 1.2.3.2
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 1.2.3.2.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 1.2.3.2.1.1
Triệt tiêu thừa số chung.
Bước 1.2.3.2.1.2
Chia cho .
Bước 1.2.3.3
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 1.2.3.3.1
Chia cho .
Bước 1.2.4
Lấy cosin nghịch đảo của cả hai vế của phương trình để trích xuất từ trong cosin.
Bước 1.2.5
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 1.2.5.1
Giá trị chính xác của .
Bước 1.2.6
Hàm cosin âm trong góc phần tư thứ hai và thứ ba. Để tìm đáp án thứ hai, hãy trừ góc tham chiếu từ để tìm đáp án trong góc phần tư thứ ba.
Bước 1.2.7
Trừ khỏi .
Bước 1.2.8
Tìm chu kỳ của .
Nhấp để xem thêm các bước...
Bước 1.2.8.1
Chu kỳ của hàm số có thể được tính bằng .
Bước 1.2.8.2
Thay thế với trong công thức cho chu kỳ.
Bước 1.2.8.3
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa .
Bước 1.2.8.4
Chia cho .
Bước 1.2.9
Chu kỳ của hàm nên các giá trị sẽ lặp lại sau mỗi radian theo cả hai hướng.
, cho mọi số nguyên
, cho mọi số nguyên
Bước 1.3
Tìm các giá trị có đạo hàm tại đó không xác định.
Nhấp để xem thêm các bước...
Bước 1.3.1
Tập xác định của biểu thức là tất cả các số thực trừ trường hợp biểu thức không xác định. Trong trường hợp này, không có số thực nào làm cho biểu thức không xác định.
Bước 1.4
Tính tại các giá trị có đạo hàm bằng hoặc không xác định.
Nhấp để xem thêm các bước...
Bước 1.4.1
Tính giá trị tại .
Nhấp để xem thêm các bước...
Bước 1.4.1.1
Thay bằng .
Bước 1.4.1.2
Rút gọn.
Nhấp để xem thêm các bước...
Bước 1.4.1.2.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 1.4.1.2.1.1
Áp dụng góc tham chiếu bằng cách tìm góc có các giá trị lượng giác tương đương trong góc phần tư thứ nhất.
Bước 1.4.1.2.1.2
Giá trị chính xác của .
Bước 1.4.1.2.1.3
Nhân với .
Bước 1.4.1.2.2
Cộng .
Bước 1.4.2
Tính giá trị tại .
Nhấp để xem thêm các bước...
Bước 1.4.2.1
Thay bằng .
Bước 1.4.2.2
Rút gọn.
Nhấp để xem thêm các bước...
Bước 1.4.2.2.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 1.4.2.2.1.1
Nhân với .
Bước 1.4.2.2.1.2
Trừ vòng quay hoàn chỉnh của cho đến khi góc lớn hơn hoặc bằng và nhỏ hơn .
Bước 1.4.2.2.1.3
Áp dụng góc tham chiếu bằng cách tìm góc có các giá trị lượng giác tương đương trong góc phần tư thứ nhất.
Bước 1.4.2.2.1.4
Giá trị chính xác của .
Bước 1.4.2.2.1.5
Nhân với .
Bước 1.4.2.2.2
Cộng .
Bước 1.4.3
Tính giá trị tại .
Nhấp để xem thêm các bước...
Bước 1.4.3.1
Thay bằng .
Bước 1.4.3.2
Rút gọn.
Nhấp để xem thêm các bước...
Bước 1.4.3.2.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 1.4.3.2.1.1
Nhân với .
Bước 1.4.3.2.1.2
Trừ vòng quay hoàn chỉnh của cho đến khi góc lớn hơn hoặc bằng và nhỏ hơn .
Bước 1.4.3.2.1.3
Áp dụng góc tham chiếu bằng cách tìm góc có các giá trị lượng giác tương đương trong góc phần tư thứ nhất.
Bước 1.4.3.2.1.4
Giá trị chính xác của .
Bước 1.4.3.2.1.5
Nhân với .
Bước 1.4.3.2.2
Cộng .
Bước 1.4.4
Tính giá trị tại .
Nhấp để xem thêm các bước...
Bước 1.4.4.1
Thay bằng .
Bước 1.4.4.2
Rút gọn.
Nhấp để xem thêm các bước...
Bước 1.4.4.2.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 1.4.4.2.1.1
Nhân với .
Bước 1.4.4.2.1.2
Trừ vòng quay hoàn chỉnh của cho đến khi góc lớn hơn hoặc bằng và nhỏ hơn .
Bước 1.4.4.2.1.3
Áp dụng góc tham chiếu bằng cách tìm góc có các giá trị lượng giác tương đương trong góc phần tư thứ nhất.
Bước 1.4.4.2.1.4
Giá trị chính xác của .
Bước 1.4.4.2.1.5
Nhân với .
Bước 1.4.4.2.2
Cộng .
Bước 1.4.5
Tính giá trị tại .
Nhấp để xem thêm các bước...
Bước 1.4.5.1
Thay bằng .
Bước 1.4.5.2
Rút gọn.
Nhấp để xem thêm các bước...
Bước 1.4.5.2.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 1.4.5.2.1.1
Nhân với .
Bước 1.4.5.2.1.2
Trừ vòng quay hoàn chỉnh của cho đến khi góc lớn hơn hoặc bằng và nhỏ hơn .
Bước 1.4.5.2.1.3
Áp dụng góc tham chiếu bằng cách tìm góc có các giá trị lượng giác tương đương trong góc phần tư thứ nhất.
Bước 1.4.5.2.1.4
Giá trị chính xác của .
Bước 1.4.5.2.1.5
Nhân với .
Bước 1.4.5.2.2
Cộng .
Bước 1.4.6
Liệt kê tất cả các điểm.
Bước 2
Bỏ các điểm không nằm trong khoảng đang xét ra.
Bước 3
Tính giá trị tại các điểm đầu mút.
Nhấp để xem thêm các bước...
Bước 3.1
Tính giá trị tại .
Nhấp để xem thêm các bước...
Bước 3.1.1
Thay bằng .
Bước 3.1.2
Rút gọn.
Nhấp để xem thêm các bước...
Bước 3.1.2.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 3.1.2.1.1
Nhân với .
Bước 3.1.2.1.2
Giá trị chính xác của .
Bước 3.1.2.1.3
Nhân với .
Bước 3.1.2.2
Cộng .
Bước 3.2
Tính giá trị tại .
Nhấp để xem thêm các bước...
Bước 3.2.1
Thay bằng .
Bước 3.2.2
Rút gọn.
Nhấp để xem thêm các bước...
Bước 3.2.2.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 3.2.2.1.1
Nhân với .
Bước 3.2.2.1.2
Trừ vòng quay hoàn chỉnh của cho đến khi góc lớn hơn hoặc bằng và nhỏ hơn .
Bước 3.2.2.1.3
Giá trị chính xác của .
Bước 3.2.2.1.4
Nhân với .
Bước 3.2.2.2
Cộng .
Bước 3.3
Liệt kê tất cả các điểm.
Bước 4
So sánh các giá trị tìm được với mỗi giá trị của để xác định cực đại tuyệt đối và cực tiểu tuyệt đối trên khoảng đã cho. Cực đại sẽ xảy ra tại giá trị cao nhất và cực tiểu sẽ xảy ra tại giá trị thấp nhất.
Cực đại tuyệt đối:
Cực tiểu tuyệt đối:
Bước 5