Giải tích Ví dụ

Tìm Điểm Cực Đại Toàn Cục và Cực Tiểu Toàn Cục trong Khoảng f(x)=x^a(1-x)^b , 0<=x<=1
,
Bước 1
Tìm các điểm tới hạn.
Nhấp để xem thêm các bước...
Bước 1.1
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 1.1.1
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 1.1.1.1
Tìm đạo hàm bằng cách sử dụng quy tắc tích số, quy tắc nói rằng trong đó .
Bước 1.1.1.2
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng trong đó .
Nhấp để xem thêm các bước...
Bước 1.1.1.2.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 1.1.1.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.1.1.2.3
Thay thế tất cả các lần xuất hiện của với .
Bước 1.1.1.3
Tìm đạo hàm.
Nhấp để xem thêm các bước...
Bước 1.1.1.3.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 1.1.1.3.2
là hằng số đối với , đạo hàm của đối với .
Bước 1.1.1.3.3
Cộng .
Bước 1.1.1.3.4
không đổi đối với , nên đạo hàm của đối với .
Bước 1.1.1.3.5
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.1.1.3.6
Rút gọn biểu thức.
Nhấp để xem thêm các bước...
Bước 1.1.1.3.6.1
Nhân với .
Bước 1.1.1.3.6.2
Di chuyển sang phía bên trái của .
Bước 1.1.1.3.6.3
Viết lại ở dạng .
Bước 1.1.1.3.7
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.1.1.4
Rút gọn.
Nhấp để xem thêm các bước...
Bước 1.1.1.4.1
Sắp xếp lại các số hạng.
Bước 1.1.1.4.2
Sắp xếp lại các thừa số trong .
Bước 1.1.2
Đạo hàm bậc nhất của đối với .
Bước 1.2
Cho đạo hàm bằng .
Bước 1.3
Tìm các giá trị có đạo hàm tại đó không xác định.
Nhấp để xem thêm các bước...
Bước 1.3.1
Tập xác định của biểu thức là tất cả các số thực trừ trường hợp biểu thức không xác định. Trong trường hợp này, không có số thực nào làm cho biểu thức không xác định.
Bước 1.4
Không có giá trị nào của trong tập xác định của bài toán ban đầu có đạo hàm bằng hoặc không xác định.
Không tìm được điểm cực trị nào
Không tìm được điểm cực trị nào
Bước 2
Tính giá trị tại các điểm đầu mút.
Nhấp để xem thêm các bước...
Bước 2.1
Tính giá trị tại .
Nhấp để xem thêm các bước...
Bước 2.1.1
Thay bằng .
Bước 2.1.2
Rút gọn.
Nhấp để xem thêm các bước...
Bước 2.1.2.1
Trừ khỏi .
Bước 2.1.2.2
Một mũ bất kỳ số nào là một.
Bước 2.1.2.3
Nhân với .
Bước 2.2
Tính giá trị tại .
Nhấp để xem thêm các bước...
Bước 2.2.1
Thay bằng .
Bước 2.2.2
Rút gọn.
Nhấp để xem thêm các bước...
Bước 2.2.2.1
Một mũ bất kỳ số nào là một.
Bước 2.2.2.2
Nhân với .
Bước 2.2.2.3
Nhân với .
Bước 2.2.2.4
Trừ khỏi .
Bước 2.3
Liệt kê tất cả các điểm.
Bước 3
So sánh các giá trị tìm được với mỗi giá trị của để xác định cực đại tuyệt đối và cực tiểu tuyệt đối trên khoảng đã cho. Cực đại sẽ xảy ra tại giá trị cao nhất và cực tiểu sẽ xảy ra tại giá trị thấp nhất.
Không có cực đại tuyệt đối
Không có cực tiểu tuyệt đối
Bước 4