Nhập bài toán...
Giải tích Ví dụ
,
Bước 1
Bước 1.1
Tìm đạo hàm bậc một.
Bước 1.1.1
Tìm đạo hàm bậc một.
Bước 1.1.1.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 1.1.1.2
Đạo hàm của đối với là .
Bước 1.1.1.3
Tính .
Bước 1.1.1.3.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.1.1.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.1.1.3.3
Nhân với .
Bước 1.1.2
Đạo hàm bậc nhất của đối với là .
Bước 1.2
Cho đạo hàm bằng rồi giải phương trình .
Bước 1.2.1
Cho đạo hàm bằng .
Bước 1.2.2
Cộng cho cả hai vế của phương trình.
Bước 1.2.3
Tìm mẫu số chung nhỏ nhất của các số hạng trong phương trình.
Bước 1.2.3.1
Tìm MCNN của các giá trị cũng giống như tìm BCNN của các mẫu số của các giá trị đó.
Bước 1.2.3.2
BCNN của một và bất kỳ biểu thức nào chính là biểu thức đó.
Bước 1.2.4
Nhân mỗi số hạng trong với để loại bỏ các phân số.
Bước 1.2.4.1
Nhân mỗi số hạng trong với .
Bước 1.2.4.2
Rút gọn vế trái.
Bước 1.2.4.2.1
Triệt tiêu thừa số chung .
Bước 1.2.4.2.1.1
Triệt tiêu thừa số chung.
Bước 1.2.4.2.1.2
Viết lại biểu thức.
Bước 1.2.4.3
Rút gọn vế phải.
Bước 1.2.4.3.1
Nhân với .
Bước 1.2.5
Viết lại phương trình ở dạng .
Bước 1.3
Tìm các giá trị có đạo hàm tại đó không xác định.
Bước 1.3.1
Đặt mẫu số trong bằng để tìm nơi biểu thức không xác định.
Bước 1.4
Tính tại các giá trị có đạo hàm bằng hoặc không xác định.
Bước 1.4.1
Tính giá trị tại .
Bước 1.4.1.1
Thay bằng .
Bước 1.4.1.2
Rút gọn.
Bước 1.4.1.2.1
Rút gọn mỗi số hạng.
Bước 1.4.1.2.1.1
Logarit tự nhiên của là .
Bước 1.4.1.2.1.2
Nhân với .
Bước 1.4.1.2.2
Trừ khỏi .
Bước 1.4.2
Tính giá trị tại .
Bước 1.4.2.1
Thay bằng .
Bước 1.4.2.2
Logarit tự nhiên của 0 là không xác định.
Không xác định
Không xác định
Bước 1.4.3
Liệt kê tất cả các điểm.
Bước 2
Bước 2.1
Chia thành các khoảng riêng biệt xung quanh các giá trị và làm cho đạo hàm bậc nhất hoặc không xác định.
Bước 2.2
Thay bất kỳ số nào, chẳng hạn như , từ khoảng trong đạo hàm đầu tiên để kiểm tra xem kết quả là âm hay dương.
Bước 2.2.1
Thay thế biến bằng trong biểu thức.
Bước 2.2.2
Rút gọn kết quả.
Bước 2.2.2.1
Di chuyển dấu trừ ra phía trước của phân số.
Bước 2.2.2.2
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 2.2.2.3
Kết hợp và .
Bước 2.2.2.4
Kết hợp các tử số trên mẫu số chung.
Bước 2.2.2.5
Rút gọn tử số.
Bước 2.2.2.5.1
Nhân với .
Bước 2.2.2.5.2
Trừ khỏi .
Bước 2.2.2.6
Di chuyển dấu trừ ra phía trước của phân số.
Bước 2.2.2.7
Câu trả lời cuối cùng là .
Bước 2.3
Thay bất kỳ số nào, chẳng hạn như , từ khoảng trong đạo hàm đầu tiên để kiểm tra xem kết quả là âm hay dương.
Bước 2.3.1
Thay thế biến bằng trong biểu thức.
Bước 2.3.2
Rút gọn kết quả.
Bước 2.3.2.1
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 2.3.2.2
Kết hợp và .
Bước 2.3.2.3
Kết hợp các tử số trên mẫu số chung.
Bước 2.3.2.4
Rút gọn tử số.
Bước 2.3.2.4.1
Nhân với .
Bước 2.3.2.4.2
Trừ khỏi .
Bước 2.3.2.5
Di chuyển dấu trừ ra phía trước của phân số.
Bước 2.3.2.6
Câu trả lời cuối cùng là .
Bước 2.4
Vì đạo hàm bậc nhất không thay đổi dấu xung quanh , nên đây không phải là một cực đại địa phương hoặc cực tiểu địa phương.
Không phải là một cực đại địa phương hoặc cực tiểu địa phương
Bước 2.5
Không tìm được cực đại địa phương hoặc cực tiểu địa phương cho .
Không có cực đại địa phương hoặc cực tiểu địa phương
Không có cực đại địa phương hoặc cực tiểu địa phương
Bước 3
So sánh các giá trị tìm được với mỗi giá trị của để xác định cực đại tuyệt đối và cực tiểu tuyệt đối trên khoảng đã cho. Cực đại sẽ xảy ra tại giá trị cao nhất và cực tiểu sẽ xảy ra tại giá trị thấp nhất.
Không có cực đại tuyệt đối
Không có cực tiểu tuyệt đối
Bước 4