Giải tích Ví dụ

Tìm Điểm Cực Đại Toàn Cục và Cực Tiểu Toàn Cục trong Khoảng f(x)=1/x
Bước 1
Tìm đạo hàm bậc một của hàm số.
Nhấp để xem thêm các bước...
Bước 1.1
Viết lại ở dạng .
Bước 1.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.3
Viết lại biểu thức bằng quy tắc số mũ âm .
Bước 2
Tìm đạo hàm bậc hai của hàm số.
Nhấp để xem thêm các bước...
Bước 2.1
Tìm đạo hàm bằng cách sử dụng quy tắc tích số, quy tắc nói rằng trong đó .
Bước 2.2
Tìm đạo hàm.
Nhấp để xem thêm các bước...
Bước 2.2.1
Viết lại ở dạng .
Bước 2.2.2
Nhân các số mũ trong .
Nhấp để xem thêm các bước...
Bước 2.2.2.1
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 2.2.2.2
Nhân với .
Bước 2.2.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.2.4
Nhân với .
Bước 2.2.5
là hằng số đối với , đạo hàm của đối với .
Bước 2.2.6
Rút gọn biểu thức.
Nhấp để xem thêm các bước...
Bước 2.2.6.1
Nhân với .
Bước 2.2.6.2
Cộng .
Bước 2.3
Rút gọn.
Nhấp để xem thêm các bước...
Bước 2.3.1
Viết lại biểu thức bằng quy tắc số mũ âm .
Bước 2.3.2
Kết hợp .
Bước 3
Để tìm các giá trị cực đại địa phương và cực tiểu địa phương của hàm số, đặt đạo hàm bằng và giải.
Bước 4
Vì không có giá trị nào của làm cho đạo hàm bậc nhất bằng , nên không có cực trị địa phương.
Không có cực trị địa phương
Bước 5
Không có cực trị địa phương
Bước 6