Nhập bài toán...
Giải tích Ví dụ
;
Bước 1
Bước 1.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 1.2
Tính .
Bước 1.2.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.2.3
Nhân với .
Bước 1.2.4
Kết hợp và .
Bước 1.2.5
Nhân với .
Bước 1.2.6
Kết hợp và .
Bước 1.2.7
Triệt tiêu thừa số chung của và .
Bước 1.2.7.1
Đưa ra ngoài .
Bước 1.2.7.2
Triệt tiêu các thừa số chung.
Bước 1.2.7.2.1
Đưa ra ngoài .
Bước 1.2.7.2.2
Triệt tiêu thừa số chung.
Bước 1.2.7.2.3
Viết lại biểu thức.
Bước 1.2.7.2.4
Chia cho .
Bước 1.3
Tính .
Bước 1.3.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.3.3
Nhân với .
Bước 1.4
Tìm đạo hàm bằng quy tắc hằng số.
Bước 1.4.1
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 1.4.2
Cộng và .
Bước 1.5
Tính đạo hàm tại .
Bước 1.6
Rút gọn.
Bước 1.6.1
Nhân với .
Bước 1.6.2
Cộng và .
Bước 2
Bước 2.1
Sử dụng hệ số góc và một điểm đã cho để thay và ở dạng biết một điểm và hệ số góc , được tìm từ phương trình hệ số góc .
Bước 2.2
Rút gọn phương trình và giữ nó ở dạng biết một điểm và hệ số góc.
Bước 2.3
Giải tìm .
Bước 2.3.1
Rút gọn .
Bước 2.3.1.1
Viết lại.
Bước 2.3.1.2
Rút gọn bằng cách cộng các số 0.
Bước 2.3.1.3
Áp dụng thuộc tính phân phối.
Bước 2.3.1.4
Nhân với .
Bước 2.3.2
Di chuyển tất cả các số hạng không chứa sang vế phải của phương trình.
Bước 2.3.2.1
Trừ khỏi cả hai vế của phương trình.
Bước 2.3.2.2
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 2.3.2.3
Kết hợp và .
Bước 2.3.2.4
Kết hợp các tử số trên mẫu số chung.
Bước 2.3.2.5
Rút gọn tử số.
Bước 2.3.2.5.1
Nhân với .
Bước 2.3.2.5.2
Trừ khỏi .
Bước 3