Giải tích Ví dụ

Tìm Đường Tiếp Tuyến tại x=1 f(x)=8 logarit tự nhiên của x at x=1
at
Bước 1
Tìm giá trị tương ứng để .
Nhấp để xem thêm các bước...
Bước 1.1
Thay vào cho .
Bước 1.2
Giải tìm .
Nhấp để xem thêm các bước...
Bước 1.2.1
Loại bỏ các dấu ngoặc đơn.
Bước 1.2.2
Rút gọn .
Nhấp để xem thêm các bước...
Bước 1.2.2.1
Logarit tự nhiên của .
Bước 1.2.2.2
Nhân với .
Bước 2
Tìm đạo hàm và tính giá trị tại để tìm hệ số góc của đường tiếp tuyến.
Nhấp để xem thêm các bước...
Bước 2.1
không đổi đối với , nên đạo hàm của đối với .
Bước 2.2
Đạo hàm của đối với .
Bước 2.3
Kết hợp .
Bước 2.4
Tính đạo hàm tại .
Bước 2.5
Chia cho .
Bước 3
Thế hệ số góc và tọa độ điểm vào công thức phương trình đường thẳng dạng hệ số góc và giải tìm .
Nhấp để xem thêm các bước...
Bước 3.1
Sử dụng hệ số góc và một điểm đã cho để thay ở dạng biết một điểm và hệ số góc , được tìm từ phương trình hệ số góc .
Bước 3.2
Rút gọn phương trình và giữ nó ở dạng biết một điểm và hệ số góc.
Bước 3.3
Giải tìm .
Nhấp để xem thêm các bước...
Bước 3.3.1
Cộng .
Bước 3.3.2
Rút gọn .
Nhấp để xem thêm các bước...
Bước 3.3.2.1
Áp dụng thuộc tính phân phối.
Bước 3.3.2.2
Nhân với .
Bước 4