Giải tích Ví dụ

Lấy Tích Phân Bằng Cách Sử Dụng Phương Pháp Thay Thế u tích phân của xsin(x^2)^2 đối với x
Bước 1
Giả sử . Sau đó , nên . Viết lại bằng .
Nhấp để xem thêm các bước...
Bước 1.1
Hãy đặt . Tìm .
Nhấp để xem thêm các bước...
Bước 1.1.1
Tính đạo hàm .
Bước 1.1.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.2
Viết lại bài tập bằng cách dùng .
Bước 2
Kết hợp .
Bước 3
không đổi đối với , hãy di chuyển ra khỏi tích phân.
Bước 4
Sử dụng công thức góc chia đôi để viết lại ở dạng .
Bước 5
không đổi đối với , hãy di chuyển ra khỏi tích phân.
Bước 6
Rút gọn.
Nhấp để xem thêm các bước...
Bước 6.1
Nhân với .
Bước 6.2
Nhân với .
Bước 7
Chia tích phân đơn thành nhiều tích phân.
Bước 8
Áp dụng quy tắc hằng số.
Bước 9
không đổi đối với , hãy di chuyển ra khỏi tích phân.
Bước 10
Giả sử . Sau đó , nên . Viết lại bằng .
Nhấp để xem thêm các bước...
Bước 10.1
Hãy đặt . Tìm .
Nhấp để xem thêm các bước...
Bước 10.1.1
Tính đạo hàm .
Bước 10.1.2
không đổi đối với , nên đạo hàm của đối với .
Bước 10.1.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 10.1.4
Nhân với .
Bước 10.2
Viết lại bài tập bằng cách dùng .
Bước 11
Kết hợp .
Bước 12
không đổi đối với , hãy di chuyển ra khỏi tích phân.
Bước 13
Tích phân của đối với .
Bước 14
Rút gọn.
Bước 15
Thay trở lại cho mỗi biến thay thế tích phân.
Nhấp để xem thêm các bước...
Bước 15.1
Thay thế tất cả các lần xuất hiện của với .
Bước 15.2
Thay thế tất cả các lần xuất hiện của với .
Bước 15.3
Thay thế tất cả các lần xuất hiện của với .
Bước 16
Rút gọn.
Nhấp để xem thêm các bước...
Bước 16.1
Kết hợp .
Bước 16.2
Áp dụng thuộc tính phân phối.
Bước 16.3
Kết hợp .
Bước 16.4
Nhân .
Nhấp để xem thêm các bước...
Bước 16.4.1
Nhân với .
Bước 16.4.2
Nhân với .
Bước 17
Sắp xếp lại các số hạng.