Giải tích Ví dụ

Ước Tính Bằng Cách Sử Dụng Quy Tắc L''Hôpital giới hạn khi x tiến dần đến 0 của (e^(-x)-1)/(3tan(2x)-2x^3)
Bước 1
Tính giới hạn của tử số và giới hạn của mẫu số.
Nhấp để xem thêm các bước...
Bước 1.1
Lấy giới hạn của tử số và giới hạn của mẫu số.
Bước 1.2
Tính giới hạn của tử số.
Nhấp để xem thêm các bước...
Bước 1.2.1
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 1.2.2
Đưa giới hạn vào trong số mũ.
Bước 1.2.3
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 1.2.4
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 1.2.5
Rút gọn các số hạng.
Nhấp để xem thêm các bước...
Bước 1.2.5.1
Tính giới hạn của bằng cách điền vào cho .
Bước 1.2.5.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 1.2.5.2.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 1.2.5.2.1.1
Bất kỳ đại lượng nào mũ lên đều là .
Bước 1.2.5.2.1.2
Nhân với .
Bước 1.2.5.2.2
Trừ khỏi .
Bước 1.3
Tính giới hạn của mẫu số.
Nhấp để xem thêm các bước...
Bước 1.3.1
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 1.3.2
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 1.3.3
Di chuyển giới hạn vào trong hàm lượng giác vì tang liên tục.
Bước 1.3.4
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 1.3.5
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 1.3.6
Đưa số mũ từ ra ngoài giới hạn bằng quy tắc lũy thừa của giới hạn.
Bước 1.3.7
Tính các giới hạn bằng cách điền vào cho tất cả các lần xảy ra của .
Nhấp để xem thêm các bước...
Bước 1.3.7.1
Tính giới hạn của bằng cách điền vào cho .
Bước 1.3.7.2
Tính giới hạn của bằng cách điền vào cho .
Bước 1.3.8
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 1.3.8.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 1.3.8.1.1
Nhân với .
Bước 1.3.8.1.2
Giá trị chính xác của .
Bước 1.3.8.1.3
Nhân với .
Bước 1.3.8.1.4
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 1.3.8.1.5
Nhân với .
Bước 1.3.8.2
Cộng .
Bước 1.3.8.3
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 1.3.9
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 1.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 2
ở dạng không xác định, nên ta áp dụng quy tắc L'Hôpital. Quy tắc L'Hôpital khẳng định rằng giới hạn của một thương của các hàm số bằng giới hạn của thương của các đạo hàm của chúng.
Bước 3
Tìm đạo hàm của tử số và mẫu số.
Nhấp để xem thêm các bước...
Bước 3.1
Tính đạo hàm tử số và mẫu số.
Bước 3.2
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 3.3
Tính .
Nhấp để xem thêm các bước...
Bước 3.3.1
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng trong đó .
Nhấp để xem thêm các bước...
Bước 3.3.1.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 3.3.1.2
Tìm đạo hàm bằng cách sử dụng Quy tắc mũ, quy tắc nói rằng trong đó =.
Bước 3.3.1.3
Thay thế tất cả các lần xuất hiện của với .
Bước 3.3.2
không đổi đối với , nên đạo hàm của đối với .
Bước 3.3.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 3.3.4
Nhân với .
Bước 3.3.5
Di chuyển sang phía bên trái của .
Bước 3.3.6
Viết lại ở dạng .
Bước 3.4
là hằng số đối với , đạo hàm của đối với .
Bước 3.5
Cộng .
Bước 3.6
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 3.7
Tính .
Nhấp để xem thêm các bước...
Bước 3.7.1
không đổi đối với , nên đạo hàm của đối với .
Bước 3.7.2
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng trong đó .
Nhấp để xem thêm các bước...
Bước 3.7.2.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 3.7.2.2
Đạo hàm của đối với .
Bước 3.7.2.3
Thay thế tất cả các lần xuất hiện của với .
Bước 3.7.3
không đổi đối với , nên đạo hàm của đối với .
Bước 3.7.4
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 3.7.5
Nhân với .
Bước 3.7.6
Di chuyển sang phía bên trái của .
Bước 3.7.7
Nhân với .
Bước 3.8
Tính .
Nhấp để xem thêm các bước...
Bước 3.8.1
không đổi đối với , nên đạo hàm của đối với .
Bước 3.8.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 3.8.3
Nhân với .
Bước 3.9
Sắp xếp lại các số hạng.
Bước 4
Tách giới hạn bằng quy tắc thương số của giới hạn trên giới hạn khi tiến dần đến .
Bước 5
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 6
Đưa giới hạn vào trong số mũ.
Bước 7
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 8
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 9
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 10
Đưa số mũ từ ra ngoài giới hạn bằng quy tắc lũy thừa của giới hạn.
Bước 11
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 12
Đưa số mũ từ ra ngoài giới hạn bằng quy tắc lũy thừa của giới hạn.
Bước 13
Di chuyển giới hạn vào trong hàm lượng giác vì secant liên tục.
Bước 14
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 15
Tính các giới hạn bằng cách điền vào cho tất cả các lần xảy ra của .
Nhấp để xem thêm các bước...
Bước 15.1
Tính giới hạn của bằng cách điền vào cho .
Bước 15.2
Tính giới hạn của bằng cách điền vào cho .
Bước 15.3
Tính giới hạn của bằng cách điền vào cho .
Bước 16
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 16.1
Bất kỳ đại lượng nào mũ lên đều là .
Bước 16.2
Rút gọn mẫu số.
Nhấp để xem thêm các bước...
Bước 16.2.1
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 16.2.2
Nhân với .
Bước 16.2.3
Nhân với .
Bước 16.2.4
Giá trị chính xác của .
Bước 16.2.5
Một mũ bất kỳ số nào là một.
Bước 16.2.6
Nhân với .
Bước 16.2.7
Cộng .
Bước 16.3
Nhân với .
Bước 16.4
Di chuyển dấu trừ ra phía trước của phân số.