Giải tích Ví dụ

Tìm Nguyên Hàm (x^2)/(2x+2)
Bước 1
Viết ở dạng một hàm số.
Bước 2
Có thể tìm hàm số bằng cách tìm tích phân bất định của đạo hàm .
Bước 3
Lập tích phân để giải.
Bước 4
Chia cho .
Nhấp để xem thêm các bước...
Bước 4.1
Lập các đa thức được chia. Nếu không có đủ số hạng cho mọi số mũ, hãy chèn một số hạng có giá trị .
+++
Bước 4.2
Chia số hạng bậc cao nhất trong biểu thức bị chia cho số hạng bậc cao nhất trong biểu thức chia .
+++
Bước 4.3
Nhân số hạng thương số mới với số chia.
+++
++
Bước 4.4
Biểu thức cần được trừ khỏi số bị chia, vì vậy hãy đổi tất cả các dấu trong
+++
--
Bước 4.5
Sau khi đổi các dấu, cộng số bị chia cuối cùng của đa thức từ phép nhân để tìm số bị chia mới.
+++
--
-
Bước 4.6
Đưa các số hạng tiếp theo từ biểu thức bị chia ban đầu xuống dưới biểu thức bị chia hiện tại.
+++
--
-+
Bước 4.7
Chia số hạng bậc cao nhất trong biểu thức bị chia cho số hạng bậc cao nhất trong biểu thức chia .
-
+++
--
-+
Bước 4.8
Nhân số hạng thương số mới với số chia.
-
+++
--
-+
--
Bước 4.9
Biểu thức cần được trừ khỏi số bị chia, vì vậy hãy đổi tất cả các dấu trong
-
+++
--
-+
++
Bước 4.10
Sau khi đổi các dấu, cộng số bị chia cuối cùng của đa thức từ phép nhân để tìm số bị chia mới.
-
+++
--
-+
++
+
Bước 4.11
Đáp án cuối cùng là thương cộng với phần còn lại trên số chia.
Bước 5
Chia tích phân đơn thành nhiều tích phân.
Bước 6
không đổi đối với , hãy di chuyển ra khỏi tích phân.
Bước 7
Theo Quy tắc lũy thừa, tích phân của đối với .
Bước 8
Áp dụng quy tắc hằng số.
Bước 9
Giả sử . Sau đó , nên . Viết lại bằng .
Nhấp để xem thêm các bước...
Bước 9.1
Hãy đặt . Tìm .
Nhấp để xem thêm các bước...
Bước 9.1.1
Tính đạo hàm .
Bước 9.1.2
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 9.1.3
Tính .
Nhấp để xem thêm các bước...
Bước 9.1.3.1
không đổi đối với , nên đạo hàm của đối với .
Bước 9.1.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 9.1.3.3
Nhân với .
Bước 9.1.4
Tìm đạo hàm bằng quy tắc hằng số.
Nhấp để xem thêm các bước...
Bước 9.1.4.1
là hằng số đối với , đạo hàm của đối với .
Bước 9.1.4.2
Cộng .
Bước 9.2
Viết lại bài tập bằng cách dùng .
Bước 10
Rút gọn.
Nhấp để xem thêm các bước...
Bước 10.1
Nhân với .
Bước 10.2
Di chuyển sang phía bên trái của .
Bước 11
không đổi đối với , hãy di chuyển ra khỏi tích phân.
Bước 12
Tích phân của đối với .
Bước 13
Rút gọn.
Bước 14
Thay thế tất cả các lần xuất hiện của với .
Bước 15
Sắp xếp lại các số hạng.
Bước 16
Câu trả lời là nguyên hàm của hàm số .