Giải tích Ví dụ

Tìm Độ Lõm -1/3x^3-x^2
Bước 1
Viết ở dạng một hàm số.
Bước 2
Find the values where the second derivative is equal to .
Nhấp để xem thêm các bước...
Bước 2.1
Tìm đạo hàm bậc hai.
Nhấp để xem thêm các bước...
Bước 2.1.1
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 2.1.1.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 2.1.1.2
Tính .
Nhấp để xem thêm các bước...
Bước 2.1.1.2.1
không đổi đối với , nên đạo hàm của đối với .
Bước 2.1.1.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.1.1.2.3
Nhân với .
Bước 2.1.1.2.4
Kết hợp .
Bước 2.1.1.2.5
Kết hợp .
Bước 2.1.1.2.6
Triệt tiêu thừa số chung của .
Nhấp để xem thêm các bước...
Bước 2.1.1.2.6.1
Đưa ra ngoài .
Bước 2.1.1.2.6.2
Triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 2.1.1.2.6.2.1
Đưa ra ngoài .
Bước 2.1.1.2.6.2.2
Triệt tiêu thừa số chung.
Bước 2.1.1.2.6.2.3
Viết lại biểu thức.
Bước 2.1.1.2.6.2.4
Chia cho .
Bước 2.1.1.3
Tính .
Nhấp để xem thêm các bước...
Bước 2.1.1.3.1
không đổi đối với , nên đạo hàm của đối với .
Bước 2.1.1.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.1.1.3.3
Nhân với .
Bước 2.1.2
Tìm đạo hàm bậc hai.
Nhấp để xem thêm các bước...
Bước 2.1.2.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 2.1.2.2
Tính .
Nhấp để xem thêm các bước...
Bước 2.1.2.2.1
không đổi đối với , nên đạo hàm của đối với .
Bước 2.1.2.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.1.2.2.3
Nhân với .
Bước 2.1.2.3
Tính .
Nhấp để xem thêm các bước...
Bước 2.1.2.3.1
không đổi đối với , nên đạo hàm của đối với .
Bước 2.1.2.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.1.2.3.3
Nhân với .
Bước 2.1.3
Đạo hàm bậc hai của đối với .
Bước 2.2
Đặt đạo hàm bậc hai bằng sau đó giải phương trình .
Nhấp để xem thêm các bước...
Bước 2.2.1
Đặt đạo hàm bậc hai bằng .
Bước 2.2.2
Cộng cho cả hai vế của phương trình.
Bước 2.2.3
Chia mỗi số hạng trong cho và rút gọn.
Nhấp để xem thêm các bước...
Bước 2.2.3.1
Chia mỗi số hạng trong cho .
Bước 2.2.3.2
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 2.2.3.2.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 2.2.3.2.1.1
Triệt tiêu thừa số chung.
Bước 2.2.3.2.1.2
Chia cho .
Bước 2.2.3.3
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 2.2.3.3.1
Chia cho .
Bước 3
Tập xác định của biểu thức là tất cả các số thực trừ trường hợp biểu thức không xác định. Trong trường hợp này, không có số thực nào làm cho biểu thức không xác định.
Ký hiệu khoảng:
Ký hiệu xây dựng tập hợp:
Bước 4
Tạo các khoảng quanh giá trị có đạo hàm bậc hai bằng không hoặc không xác định.
Bước 5
Thay bất kỳ số nào từ khoảng vào đạo hàm bậc hai và tính để xác định độ lõm.
Nhấp để xem thêm các bước...
Bước 5.1
Thay thế biến bằng trong biểu thức.
Bước 5.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 5.2.1
Nhân với .
Bước 5.2.2
Trừ khỏi .
Bước 5.2.3
Câu trả lời cuối cùng là .
Bước 5.3
Đồ thị lõm trong khoảng dương.
Lõm trên dương
Lõm trên dương
Bước 6
Thay bất kỳ số nào từ khoảng vào đạo hàm bậc hai và tính để xác định độ lõm.
Nhấp để xem thêm các bước...
Bước 6.1
Thay thế biến bằng trong biểu thức.
Bước 6.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 6.2.1
Nhân với .
Bước 6.2.2
Trừ khỏi .
Bước 6.2.3
Câu trả lời cuối cùng là .
Bước 6.3
Đồ thị lồi trên khoảng âm.
Lồi trên âm
Lồi trên âm
Bước 7
Đồ thị lồi khi đạo hàm bậc hai âm và lõm khi đạo hàm bậc hai dương.
Lõm trên dương
Lồi trên âm
Bước 8