Nhập bài toán...
Giải tích Ví dụ
Bước 1
Bước 1.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 1.2
Tính .
Bước 1.2.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.2.2
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng là trong đó và .
Bước 1.2.2.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 1.2.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.2.2.3
Thay thế tất cả các lần xuất hiện của với .
Bước 1.2.3
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 1.2.4
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.2.5
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 1.2.6
Cộng và .
Bước 1.2.7
Nhân với .
Bước 1.2.8
Kết hợp và .
Bước 1.2.9
Kết hợp và .
Bước 1.3
Tìm đạo hàm bằng quy tắc hằng số.
Bước 1.3.1
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 1.3.2
Cộng và .
Bước 2
Bước 2.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 2.2
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng là trong đó và .
Bước 2.2.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 2.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 2.2.3
Thay thế tất cả các lần xuất hiện của với .
Bước 2.3
Tìm đạo hàm.
Bước 2.3.1
Kết hợp và .
Bước 2.3.2
Rút gọn biểu thức bằng cách triệt tiêu các thừa số chung.
Bước 2.3.2.1
Nhân với .
Bước 2.3.2.2
Triệt tiêu thừa số chung của và .
Bước 2.3.2.2.1
Đưa ra ngoài .
Bước 2.3.2.2.2
Triệt tiêu các thừa số chung.
Bước 2.3.2.2.2.1
Đưa ra ngoài .
Bước 2.3.2.2.2.2
Triệt tiêu thừa số chung.
Bước 2.3.2.2.2.3
Viết lại biểu thức.
Bước 2.3.2.2.2.4
Chia cho .
Bước 2.3.3
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 2.3.4
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 2.3.5
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 2.3.6
Rút gọn biểu thức.
Bước 2.3.6.1
Cộng và .
Bước 2.3.6.2
Nhân với .
Bước 2.4
Rút gọn.
Bước 2.4.1
Áp dụng thuộc tính phân phối.
Bước 2.4.2
Nhân với .
Bước 3
Để tìm các giá trị cực đại địa phương và cực tiểu địa phương của hàm số, đặt đạo hàm bằng và giải.
Bước 4
Bước 4.1
Tìm đạo hàm bậc một.
Bước 4.1.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 4.1.2
Tính .
Bước 4.1.2.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 4.1.2.2
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng là trong đó và .
Bước 4.1.2.2.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 4.1.2.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 4.1.2.2.3
Thay thế tất cả các lần xuất hiện của với .
Bước 4.1.2.3
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 4.1.2.4
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 4.1.2.5
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 4.1.2.6
Cộng và .
Bước 4.1.2.7
Nhân với .
Bước 4.1.2.8
Kết hợp và .
Bước 4.1.2.9
Kết hợp và .
Bước 4.1.3
Tìm đạo hàm bằng quy tắc hằng số.
Bước 4.1.3.1
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 4.1.3.2
Cộng và .
Bước 4.2
Đạo hàm bậc nhất của đối với là .
Bước 5
Bước 5.1
Cho đạo hàm bằng .
Bước 5.2
Cho tử bằng không.
Bước 5.3
Giải phương trình để tìm .
Bước 5.3.1
Chia mỗi số hạng trong cho và rút gọn.
Bước 5.3.1.1
Chia mỗi số hạng trong cho .
Bước 5.3.1.2
Rút gọn vế trái.
Bước 5.3.1.2.1
Triệt tiêu thừa số chung .
Bước 5.3.1.2.1.1
Triệt tiêu thừa số chung.
Bước 5.3.1.2.1.2
Chia cho .
Bước 5.3.1.3
Rút gọn vế phải.
Bước 5.3.1.3.1
Chia cho .
Bước 5.3.2
Đặt bằng .
Bước 5.3.3
Cộng cho cả hai vế của phương trình.
Bước 6
Bước 6.1
Tập xác định của biểu thức là tất cả các số thực trừ trường hợp biểu thức không xác định. Trong trường hợp này, không có số thực nào làm cho biểu thức không xác định.
Bước 7
Các điểm cực trị cần tính.
Bước 8
Tính đạo hàm bậc hai tại . Nếu đạo hàm bậc hai dương, thì đây là một cực tiểu địa phương. Nếu nó âm, thì đây là một cực đại địa phương.
Bước 9
Bước 9.1
Nhân với .
Bước 9.2
Trừ khỏi .
Bước 10
Bước 10.1
Chia thành các khoảng riêng biệt xung quanh các giá trị và làm cho đạo hàm bậc nhất hoặc không xác định.
Bước 10.2
Thay bất kỳ số nào, chẳng hạn như , từ khoảng trong đạo hàm đầu tiên để kiểm tra xem kết quả là âm hay dương.
Bước 10.2.1
Thay thế biến bằng trong biểu thức.
Bước 10.2.2
Rút gọn kết quả.
Bước 10.2.2.1
Rút gọn tử số.
Bước 10.2.2.1.1
Trừ khỏi .
Bước 10.2.2.1.2
Nâng lên lũy thừa .
Bước 10.2.2.2
Rút gọn biểu thức.
Bước 10.2.2.2.1
Nhân với .
Bước 10.2.2.2.2
Chia cho .
Bước 10.2.2.3
Câu trả lời cuối cùng là .
Bước 10.3
Thay bất kỳ số nào, chẳng hạn như , từ khoảng trong đạo hàm đầu tiên để kiểm tra xem kết quả là âm hay dương.
Bước 10.3.1
Thay thế biến bằng trong biểu thức.
Bước 10.3.2
Rút gọn kết quả.
Bước 10.3.2.1
Rút gọn tử số.
Bước 10.3.2.1.1
Trừ khỏi .
Bước 10.3.2.1.2
Nâng lên lũy thừa .
Bước 10.3.2.2
Rút gọn biểu thức.
Bước 10.3.2.2.1
Nhân với .
Bước 10.3.2.2.2
Chia cho .
Bước 10.3.2.3
Câu trả lời cuối cùng là .
Bước 10.4
Vì đạo hàm bậc nhất không thay đổi dấu xung quanh , nên đây không phải là một cực đại địa phương hoặc cực tiểu địa phương.
Không phải là một cực đại địa phương hoặc cực tiểu địa phương
Bước 10.5
Không tìm được cực đại địa phương hoặc cực tiểu địa phương cho .
Không có cực đại địa phương hoặc cực tiểu địa phương
Không có cực đại địa phương hoặc cực tiểu địa phương
Bước 11