Giải tích Ví dụ

Tìm Nguyên Hàm (x^3)/(x+2)
Bước 1
Viết ở dạng một hàm số.
Bước 2
Có thể tìm hàm số bằng cách tìm tích phân bất định của đạo hàm .
Bước 3
Lập tích phân để giải.
Bước 4
Chia cho .
Nhấp để xem thêm các bước...
Bước 4.1
Lập các đa thức được chia. Nếu không có đủ số hạng cho mọi số mũ, hãy chèn một số hạng có giá trị .
++++
Bước 4.2
Chia số hạng bậc cao nhất trong biểu thức bị chia cho số hạng bậc cao nhất trong biểu thức chia .
++++
Bước 4.3
Nhân số hạng thương số mới với số chia.
++++
++
Bước 4.4
Biểu thức cần được trừ khỏi số bị chia, vì vậy hãy đổi tất cả các dấu trong
++++
--
Bước 4.5
Sau khi đổi các dấu, cộng số bị chia cuối cùng của đa thức từ phép nhân để tìm số bị chia mới.
++++
--
-
Bước 4.6
Đưa các số hạng tiếp theo từ biểu thức bị chia ban đầu xuống dưới biểu thức bị chia hiện tại.
++++
--
-+
Bước 4.7
Chia số hạng bậc cao nhất trong biểu thức bị chia cho số hạng bậc cao nhất trong biểu thức chia .
-
++++
--
-+
Bước 4.8
Nhân số hạng thương số mới với số chia.
-
++++
--
-+
--
Bước 4.9
Biểu thức cần được trừ khỏi số bị chia, vì vậy hãy đổi tất cả các dấu trong
-
++++
--
-+
++
Bước 4.10
Sau khi đổi các dấu, cộng số bị chia cuối cùng của đa thức từ phép nhân để tìm số bị chia mới.
-
++++
--
-+
++
+
Bước 4.11
Đưa các số hạng tiếp theo từ biểu thức bị chia ban đầu xuống dưới biểu thức bị chia hiện tại.
-
++++
--
-+
++
++
Bước 4.12
Chia số hạng bậc cao nhất trong biểu thức bị chia cho số hạng bậc cao nhất trong biểu thức chia .
-+
++++
--
-+
++
++
Bước 4.13
Nhân số hạng thương số mới với số chia.
-+
++++
--
-+
++
++
++
Bước 4.14
Biểu thức cần được trừ khỏi số bị chia, vì vậy hãy đổi tất cả các dấu trong
-+
++++
--
-+
++
++
--
Bước 4.15
Sau khi đổi các dấu, cộng số bị chia cuối cùng của đa thức từ phép nhân để tìm số bị chia mới.
-+
++++
--
-+
++
++
--
-
Bước 4.16
Đáp án cuối cùng là thương cộng với phần còn lại trên số chia.
Bước 5
Chia tích phân đơn thành nhiều tích phân.
Bước 6
Theo Quy tắc lũy thừa, tích phân của đối với .
Bước 7
không đổi đối với , hãy di chuyển ra khỏi tích phân.
Bước 8
Theo Quy tắc lũy thừa, tích phân của đối với .
Bước 9
Áp dụng quy tắc hằng số.
Bước 10
Kết hợp .
Bước 11
không đổi đối với , hãy di chuyển ra khỏi tích phân.
Bước 12
không đổi đối với , hãy di chuyển ra khỏi tích phân.
Bước 13
Nhân với .
Bước 14
Giả sử . Sau đó . Viết lại bằng .
Nhấp để xem thêm các bước...
Bước 14.1
Hãy đặt . Tìm .
Nhấp để xem thêm các bước...
Bước 14.1.1
Tính đạo hàm .
Bước 14.1.2
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 14.1.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 14.1.4
là hằng số đối với , đạo hàm của đối với .
Bước 14.1.5
Cộng .
Bước 14.2
Viết lại bài tập bằng cách dùng .
Bước 15
Tích phân của đối với .
Bước 16
Rút gọn.
Bước 17
Thay thế tất cả các lần xuất hiện của với .
Bước 18
Sắp xếp lại các số hạng.
Bước 19
Câu trả lời là nguyên hàm của hàm số .