Giải tích Ví dụ

Tìm Đạo Hàm - d/dx logarit tự nhiên của (2x-1)/(x-1)
Bước 1
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng trong đó .
Nhấp để xem thêm các bước...
Bước 1.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 1.2
Đạo hàm của đối với .
Bước 1.3
Thay thế tất cả các lần xuất hiện của với .
Bước 2
Nhân với nghịch đảo của phân số để chia cho .
Bước 3
Nhân với .
Bước 4
Tìm đạo hàm bằng cách sử dụng quy tắc thương số, quy tắc nói rằng trong đó .
Bước 5
Tìm đạo hàm.
Nhấp để xem thêm các bước...
Bước 5.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 5.2
không đổi đối với , nên đạo hàm của đối với .
Bước 5.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 5.4
Nhân với .
Bước 5.5
là hằng số đối với , đạo hàm của đối với .
Bước 5.6
Rút gọn biểu thức.
Nhấp để xem thêm các bước...
Bước 5.6.1
Cộng .
Bước 5.6.2
Di chuyển sang phía bên trái của .
Bước 5.7
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 5.8
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 5.9
là hằng số đối với , đạo hàm của đối với .
Bước 5.10
Kết hợp các phân số.
Nhấp để xem thêm các bước...
Bước 5.10.1
Cộng .
Bước 5.10.2
Nhân với .
Bước 5.10.3
Nhân với .
Bước 6
Triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 6.1
Đưa ra ngoài .
Bước 6.2
Triệt tiêu thừa số chung.
Bước 6.3
Viết lại biểu thức.
Bước 7
Rút gọn.
Nhấp để xem thêm các bước...
Bước 7.1
Áp dụng thuộc tính phân phối.
Bước 7.2
Áp dụng thuộc tính phân phối.
Bước 7.3
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 7.3.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 7.3.1.1
Nhân với .
Bước 7.3.1.2
Nhân với .
Bước 7.3.1.3
Nhân với .
Bước 7.3.2
Kết hợp các số hạng đối nhau trong .
Nhấp để xem thêm các bước...
Bước 7.3.2.1
Trừ khỏi .
Bước 7.3.2.2
Trừ khỏi .
Bước 7.3.3
Cộng .
Bước 7.4
Di chuyển dấu trừ ra phía trước của phân số.