Giải tích Ví dụ

Ước tính Giới Hạn giới hạn khi x tiến dần đến infinity của (3x^2+4x+3)/(x^3+x+14)
Bước 1
Chia tử số và mẫu số cho lũy thừa cao nhất của trong mẫu số, chính là .
Bước 2
Tính giới hạn.
Nhấp để xem thêm các bước...
Bước 2.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 2.1.1
Triệt tiêu thừa số chung của .
Nhấp để xem thêm các bước...
Bước 2.1.1.1
Đưa ra ngoài .
Bước 2.1.1.2
Triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 2.1.1.2.1
Đưa ra ngoài .
Bước 2.1.1.2.2
Triệt tiêu thừa số chung.
Bước 2.1.1.2.3
Viết lại biểu thức.
Bước 2.1.2
Triệt tiêu thừa số chung của .
Nhấp để xem thêm các bước...
Bước 2.1.2.1
Đưa ra ngoài .
Bước 2.1.2.2
Triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 2.1.2.2.1
Đưa ra ngoài .
Bước 2.1.2.2.2
Triệt tiêu thừa số chung.
Bước 2.1.2.2.3
Viết lại biểu thức.
Bước 2.2
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 2.2.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 2.2.1.1
Triệt tiêu thừa số chung.
Bước 2.2.1.2
Viết lại biểu thức.
Bước 2.2.2
Triệt tiêu thừa số chung của .
Nhấp để xem thêm các bước...
Bước 2.2.2.1
Nâng lên lũy thừa .
Bước 2.2.2.2
Đưa ra ngoài .
Bước 2.2.2.3
Triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 2.2.2.3.1
Đưa ra ngoài .
Bước 2.2.2.3.2
Triệt tiêu thừa số chung.
Bước 2.2.2.3.3
Viết lại biểu thức.
Bước 2.3
Tách giới hạn bằng quy tắc thương số của giới hạn trên giới hạn khi tiến dần đến .
Bước 2.4
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 2.5
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 3
Vì tử số của nó tiến dần đến một số thực trong khi mẫu số của nó không có biên, nên phân số tiến dần đến .
Bước 4
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 5
Vì tử số của nó tiến dần đến một số thực trong khi mẫu số của nó không có biên, nên phân số tiến dần đến .
Bước 6
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 7
Vì tử số của nó tiến dần đến một số thực trong khi mẫu số của nó không có biên, nên phân số tiến dần đến .
Bước 8
Tính giới hạn.
Nhấp để xem thêm các bước...
Bước 8.1
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 8.2
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 9
Vì tử số của nó tiến dần đến một số thực trong khi mẫu số của nó không có biên, nên phân số tiến dần đến .
Bước 10
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 11
Vì tử số của nó tiến dần đến một số thực trong khi mẫu số của nó không có biên, nên phân số tiến dần đến .
Bước 12
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 12.1
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 12.1.1
Nhân với .
Bước 12.1.2
Nhân với .
Bước 12.1.3
Nhân với .
Bước 12.1.4
Cộng .
Bước 12.1.5
Cộng .
Bước 12.2
Rút gọn mẫu số.
Nhấp để xem thêm các bước...
Bước 12.2.1
Nhân với .
Bước 12.2.2
Cộng .
Bước 12.2.3
Cộng .
Bước 12.3
Chia cho .