Giải tích Ví dụ

Ước Tính Bằng Cách Sử Dụng Quy Tắc L''Hôpital giới hạn khi x tiến dần đến 3 của (3 logarit tự nhiên của 4-x)/(x-3)
Bước 1
Tính giới hạn của tử số và giới hạn của mẫu số.
Nhấp để xem thêm các bước...
Bước 1.1
Lấy giới hạn của tử số và giới hạn của mẫu số.
Bước 1.2
Tính giới hạn của tử số.
Nhấp để xem thêm các bước...
Bước 1.2.1
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 1.2.2
Chuyển giới hạn vào bên trong logarit.
Bước 1.2.3
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 1.2.4
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 1.2.5
Rút gọn các số hạng.
Nhấp để xem thêm các bước...
Bước 1.2.5.1
Tính giới hạn của bằng cách điền vào cho .
Bước 1.2.5.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 1.2.5.2.1
Trừ khỏi .
Bước 1.2.5.2.2
Logarit tự nhiên của .
Bước 1.2.5.2.3
Nhân với .
Bước 1.3
Tính giới hạn của mẫu số.
Nhấp để xem thêm các bước...
Bước 1.3.1
Tính giới hạn.
Nhấp để xem thêm các bước...
Bước 1.3.1.1
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 1.3.1.2
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 1.3.2
Tính giới hạn của bằng cách điền vào cho .
Bước 1.3.3
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 1.3.3.1
Nhân với .
Bước 1.3.3.2
Trừ khỏi .
Bước 1.3.3.3
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 1.3.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 1.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 2
ở dạng không xác định, nên ta áp dụng quy tắc L'Hôpital. Quy tắc L'Hôpital khẳng định rằng giới hạn của một thương của các hàm số bằng giới hạn của thương của các đạo hàm của chúng.
Bước 3
Tìm đạo hàm của tử số và mẫu số.
Nhấp để xem thêm các bước...
Bước 3.1
Tính đạo hàm tử số và mẫu số.
Bước 3.2
không đổi đối với , nên đạo hàm của đối với .
Bước 3.3
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng trong đó .
Nhấp để xem thêm các bước...
Bước 3.3.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 3.3.2
Đạo hàm của đối với .
Bước 3.3.3
Thay thế tất cả các lần xuất hiện của với .
Bước 3.4
Kết hợp .
Bước 3.5
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 3.6
là hằng số đối với , đạo hàm của đối với .
Bước 3.7
Cộng .
Bước 3.8
không đổi đối với , nên đạo hàm của đối với .
Bước 3.9
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 3.10
Nhân với .
Bước 3.11
Kết hợp .
Bước 3.12
Nhân với .
Bước 3.13
Di chuyển dấu trừ ra phía trước của phân số.
Bước 3.14
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 3.15
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 3.16
là hằng số đối với , đạo hàm của đối với .
Bước 3.17
Cộng .
Bước 4
Nhân tử số với nghịch đảo của mẫu số.
Bước 5
Nhân với .
Bước 6
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 7
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 8
Tách giới hạn bằng quy tắc thương số của giới hạn trên giới hạn khi tiến dần đến .
Bước 9
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 10
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 11
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 12
Rút gọn các số hạng.
Nhấp để xem thêm các bước...
Bước 12.1
Tính giới hạn của bằng cách điền vào cho .
Bước 12.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 12.2.1
Trừ khỏi .
Bước 12.2.2
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 12.2.2.1
Triệt tiêu thừa số chung.
Bước 12.2.2.2
Viết lại biểu thức.
Bước 12.2.3
Nhân với .