Nhập bài toán...
Giải tích Ví dụ
Bước 1
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 2
Bước 2.1
Tính giới hạn của tử số và giới hạn của mẫu số.
Bước 2.1.1
Lấy giới hạn của tử số và giới hạn của mẫu số.
Bước 2.1.2
Tính giới hạn của tử số.
Bước 2.1.2.1
Di chuyển giới hạn vào trong hàm lượng giác vì sin liên tục.
Bước 2.1.2.2
Tính giới hạn của bằng cách điền vào cho .
Bước 2.1.2.3
Giá trị chính xác của là .
Bước 2.1.3
Tính giới hạn của mẫu số.
Bước 2.1.3.1
Di chuyển giới hạn vào trong hàm lượng giác vì tang liên tục.
Bước 2.1.3.2
Tính giới hạn của bằng cách điền vào cho .
Bước 2.1.3.3
Giá trị chính xác của là .
Bước 2.1.3.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 2.1.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 2.2
Vì ở dạng không xác định, nên ta áp dụng quy tắc L'Hôpital. Quy tắc L'Hôpital khẳng định rằng giới hạn của một thương của các hàm số bằng giới hạn của thương của các đạo hàm của chúng.
Bước 2.3
Tìm đạo hàm của tử số và mẫu số.
Bước 2.3.1
Tính đạo hàm tử số và mẫu số.
Bước 2.3.2
Đạo hàm của đối với là .
Bước 2.3.3
Đạo hàm của đối với là .
Bước 3
Bước 3.1
Tách giới hạn bằng quy tắc thương số của giới hạn trên giới hạn khi tiến dần đến .
Bước 3.2
Di chuyển giới hạn vào trong hàm lượng giác vì cosin liên tục.
Bước 3.3
Đưa số mũ từ ra ngoài giới hạn bằng quy tắc lũy thừa của giới hạn.
Bước 3.4
Di chuyển giới hạn vào trong hàm lượng giác vì secant liên tục.
Bước 4
Bước 4.1
Tính giới hạn của bằng cách điền vào cho .
Bước 4.2
Tính giới hạn của bằng cách điền vào cho .
Bước 5
Bước 5.1
Giá trị chính xác của là .
Bước 5.2
Rút gọn mẫu số.
Bước 5.2.1
Giá trị chính xác của là .
Bước 5.2.2
Một mũ bất kỳ số nào là một.
Bước 5.3
Triệt tiêu thừa số chung .
Bước 5.3.1
Triệt tiêu thừa số chung.
Bước 5.3.2
Viết lại biểu thức.
Bước 5.4
Nhân với .