Nhập bài toán...
Giải tích Ví dụ
Bước 1
Bước 1.1
Viết ở dạng một phân số với một mẫu số chung.
Bước 1.2
Kết hợp các tử số trên mẫu số chung.
Bước 2
Bước 2.1
Viết lại ở dạng .
Bước 2.2
Khai triển bằng cách di chuyển ra bên ngoài lôgarit.
Bước 3
Đưa giới hạn vào trong số mũ.
Bước 4
Viết lại ở dạng .
Bước 5
Bước 5.1
Tính giới hạn của tử số và giới hạn của mẫu số.
Bước 5.1.1
Lấy giới hạn của tử số và giới hạn của mẫu số.
Bước 5.1.2
Tính giới hạn của tử số.
Bước 5.1.2.1
Chuyển giới hạn vào bên trong logarit.
Bước 5.1.2.2
Chia tử số và mẫu số cho lũy thừa cao nhất của trong mẫu số, chính là .
Bước 5.1.2.3
Tính giới hạn.
Bước 5.1.2.3.1
Triệt tiêu thừa số chung .
Bước 5.1.2.3.1.1
Triệt tiêu thừa số chung.
Bước 5.1.2.3.1.2
Viết lại biểu thức.
Bước 5.1.2.3.2
Triệt tiêu thừa số chung .
Bước 5.1.2.3.2.1
Triệt tiêu thừa số chung.
Bước 5.1.2.3.2.2
Viết lại biểu thức.
Bước 5.1.2.3.3
Tách giới hạn bằng quy tắc thương số của giới hạn trên giới hạn khi tiến dần đến .
Bước 5.1.2.3.4
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 5.1.2.3.5
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 5.1.2.4
Vì tử số của nó tiến dần đến một số thực trong khi mẫu số của nó không có biên, nên phân số tiến dần đến .
Bước 5.1.2.5
Tính giới hạn.
Bước 5.1.2.5.1
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 5.1.2.5.2
Rút gọn kết quả.
Bước 5.1.2.5.2.1
Chia cho .
Bước 5.1.2.5.2.2
Cộng và .
Bước 5.1.2.5.2.3
Logarit tự nhiên của là .
Bước 5.1.3
Vì tử số của nó tiến dần đến một số thực trong khi mẫu số của nó không có biên, nên phân số tiến dần đến .
Bước 5.1.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 5.2
Vì ở dạng không xác định, nên ta áp dụng quy tắc L'Hôpital. Quy tắc L'Hôpital khẳng định rằng giới hạn của một thương của các hàm số bằng giới hạn của thương của các đạo hàm của chúng.
Bước 5.3
Tìm đạo hàm của tử số và mẫu số.
Bước 5.3.1
Tính đạo hàm tử số và mẫu số.
Bước 5.3.2
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng là trong đó và .
Bước 5.3.2.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 5.3.2.2
Đạo hàm của đối với là .
Bước 5.3.2.3
Thay thế tất cả các lần xuất hiện của với .
Bước 5.3.3
Nhân với nghịch đảo của phân số để chia cho .
Bước 5.3.4
Nhân với .
Bước 5.3.5
Tìm đạo hàm bằng cách sử dụng quy tắc thương số, quy tắc nói rằng là trong đó và .
Bước 5.3.6
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 5.3.7
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 5.3.8
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 5.3.9
Cộng và .
Bước 5.3.10
Nhân với .
Bước 5.3.11
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 5.3.12
Nhân với .
Bước 5.3.13
Nhân với .
Bước 5.3.14
Triệt tiêu các thừa số chung.
Bước 5.3.14.1
Đưa ra ngoài .
Bước 5.3.14.2
Triệt tiêu thừa số chung.
Bước 5.3.14.3
Viết lại biểu thức.
Bước 5.3.15
Rút gọn.
Bước 5.3.15.1
Áp dụng thuộc tính phân phối.
Bước 5.3.15.2
Áp dụng thuộc tính phân phối.
Bước 5.3.15.3
Rút gọn tử số.
Bước 5.3.15.3.1
Trừ khỏi .
Bước 5.3.15.3.2
Trừ khỏi .
Bước 5.3.15.3.3
Nhân với .
Bước 5.3.15.4
Kết hợp các số hạng.
Bước 5.3.15.4.1
Nâng lên lũy thừa .
Bước 5.3.15.4.2
Nâng lên lũy thừa .
Bước 5.3.15.4.3
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 5.3.15.4.4
Cộng và .
Bước 5.3.15.4.5
Nhân với .
Bước 5.3.15.4.6
Di chuyển dấu trừ ra phía trước của phân số.
Bước 5.3.15.5
Đưa ra ngoài .
Bước 5.3.15.5.1
Đưa ra ngoài .
Bước 5.3.15.5.2
Nâng lên lũy thừa .
Bước 5.3.15.5.3
Đưa ra ngoài .
Bước 5.3.15.5.4
Đưa ra ngoài .
Bước 5.3.16
Viết lại ở dạng .
Bước 5.3.17
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng là trong đó và .
Bước 5.3.17.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 5.3.17.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 5.3.17.3
Thay thế tất cả các lần xuất hiện của với .
Bước 5.3.18
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 5.3.19
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 5.3.20
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 5.3.21
Nhân với .
Bước 5.3.22
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 5.3.23
Cộng và .
Bước 5.3.24
Nhân với .
Bước 5.3.25
Rút gọn.
Bước 5.3.25.1
Viết lại biểu thức bằng quy tắc số mũ âm .
Bước 5.3.25.2
Kết hợp các số hạng.
Bước 5.3.25.2.1
Kết hợp và .
Bước 5.3.25.2.2
Di chuyển dấu trừ ra phía trước của phân số.
Bước 5.4
Nhân tử số với nghịch đảo của mẫu số.
Bước 5.5
Kết hợp các thừa số.
Bước 5.5.1
Nhân với .
Bước 5.5.2
Nhân với .
Bước 5.5.3
Nhân với .
Bước 5.6
Di chuyển sang phía bên trái của .
Bước 6
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 7
Bước 7.1
Áp dụng thuộc tính phân phối.
Bước 7.2
Nhân với .
Bước 7.3
Nhân với .
Bước 8
Chia tử và mẫu cho lũy thừa với số mũ cao nhất của dưới mẫu.
Bước 9
Bước 9.1
Rút gọn mỗi số hạng.
Bước 9.2
Tách giới hạn bằng quy tắc thương số của giới hạn trên giới hạn khi tiến dần đến .
Bước 9.3
Đưa số mũ từ ra ngoài giới hạn bằng quy tắc lũy thừa của giới hạn.
Bước 9.4
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 9.5
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 9.6
Triệt tiêu thừa số chung .
Bước 9.6.1
Triệt tiêu thừa số chung.
Bước 9.6.2
Viết lại biểu thức.
Bước 9.7
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 9.8
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 10
Vì tử số của nó tiến dần đến một số thực trong khi mẫu số của nó không có biên, nên phân số tiến dần đến .
Bước 11
Bước 11.1
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 11.2
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 12
Vì tử số của nó tiến dần đến một số thực trong khi mẫu số của nó không có biên, nên phân số tiến dần đến .
Bước 13
Bước 13.1
Rút gọn tử số.
Bước 13.1.1
Nhân với .
Bước 13.1.2
Nhân với .
Bước 13.1.3
Cộng và .
Bước 13.1.4
Nâng lên lũy thừa .
Bước 13.2
Cộng và .
Bước 13.3
Triệt tiêu thừa số chung .
Bước 13.3.1
Đưa ra ngoài .
Bước 13.3.2
Triệt tiêu thừa số chung.
Bước 13.3.3
Viết lại biểu thức.
Bước 14
Kết quả có thể được hiển thị ở nhiều dạng.
Dạng chính xác:
Dạng thập phân: