Nhập bài toán...
Giải tích Ví dụ
Bước 1
Bước 1.1
Tính giới hạn của tử số và giới hạn của mẫu số.
Bước 1.1.1
Lấy giới hạn của tử số và giới hạn của mẫu số.
Bước 1.1.2
Tính giới hạn của tử số.
Bước 1.1.2.1
Tính giới hạn.
Bước 1.1.2.1.1
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 1.1.2.1.2
Tách giới hạn bằng quy tắc thương số của giới hạn trên giới hạn khi tiến dần đến .
Bước 1.1.2.1.3
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 1.1.2.1.4
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 1.1.2.1.5
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 1.1.2.1.6
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 1.1.2.1.7
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 1.1.2.2
Tính giới hạn của bằng cách điền vào cho .
Bước 1.1.2.3
Rút gọn kết quả.
Bước 1.1.2.3.1
Rút gọn mẫu số.
Bước 1.1.2.3.1.1
Nhân với .
Bước 1.1.2.3.1.2
Nhân với .
Bước 1.1.2.3.1.3
Trừ khỏi .
Bước 1.1.2.3.2
Kết hợp các tử số trên mẫu số chung.
Bước 1.1.2.3.3
Trừ khỏi .
Bước 1.1.2.3.4
Chia cho .
Bước 1.1.3
Tính giới hạn của mẫu số.
Bước 1.1.3.1
Tính giới hạn.
Bước 1.1.3.1.1
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 1.1.3.1.2
Tách giới hạn bằng quy tắc thương số của giới hạn trên giới hạn khi tiến dần đến .
Bước 1.1.3.1.3
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 1.1.3.1.4
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 1.1.3.1.5
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 1.1.3.1.6
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 1.1.3.1.7
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 1.1.3.2
Tính giới hạn của bằng cách điền vào cho .
Bước 1.1.3.3
Rút gọn kết quả.
Bước 1.1.3.3.1
Rút gọn mẫu số.
Bước 1.1.3.3.1.1
Nhân với .
Bước 1.1.3.3.1.2
Nhân với .
Bước 1.1.3.3.1.3
Trừ khỏi .
Bước 1.1.3.3.2
Kết hợp các tử số trên mẫu số chung.
Bước 1.1.3.3.3
Trừ khỏi .
Bước 1.1.3.3.4
Chia cho .
Bước 1.1.3.3.5
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 1.1.3.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 1.1.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 1.2
Vì ở dạng không xác định, nên ta áp dụng quy tắc L'Hôpital. Quy tắc L'Hôpital khẳng định rằng giới hạn của một thương của các hàm số bằng giới hạn của thương của các đạo hàm của chúng.
Bước 1.3
Tìm đạo hàm của tử số và mẫu số.
Bước 1.3.1
Tính đạo hàm tử số và mẫu số.
Bước 1.3.2
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 1.3.3
Tính .
Bước 1.3.3.1
Viết lại ở dạng .
Bước 1.3.3.2
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng là trong đó và .
Bước 1.3.3.2.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 1.3.3.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.3.3.2.3
Thay thế tất cả các lần xuất hiện của với .
Bước 1.3.3.3
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 1.3.3.4
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.3.3.5
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.3.3.6
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 1.3.3.7
Nhân với .
Bước 1.3.3.8
Cộng và .
Bước 1.3.3.9
Nhân với .
Bước 1.3.4
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 1.3.5
Rút gọn.
Bước 1.3.5.1
Viết lại biểu thức bằng quy tắc số mũ âm .
Bước 1.3.5.2
Kết hợp các số hạng.
Bước 1.3.5.2.1
Kết hợp và .
Bước 1.3.5.2.2
Cộng và .
Bước 1.3.5.3
Rút gọn mẫu số.
Bước 1.3.5.3.1
Đưa ra ngoài .
Bước 1.3.5.3.1.1
Đưa ra ngoài .
Bước 1.3.5.3.1.2
Đưa ra ngoài .
Bước 1.3.5.3.1.3
Đưa ra ngoài .
Bước 1.3.5.3.2
Áp dụng quy tắc tích số cho .
Bước 1.3.5.3.3
Nâng lên lũy thừa .
Bước 1.3.5.4
Triệt tiêu thừa số chung .
Bước 1.3.5.4.1
Triệt tiêu thừa số chung.
Bước 1.3.5.4.2
Viết lại biểu thức.
Bước 1.3.6
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 1.3.7
Tính .
Bước 1.3.7.1
Viết lại ở dạng .
Bước 1.3.7.2
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng là trong đó và .
Bước 1.3.7.2.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 1.3.7.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.3.7.2.3
Thay thế tất cả các lần xuất hiện của với .
Bước 1.3.7.3
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 1.3.7.4
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.3.7.5
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.3.7.6
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 1.3.7.7
Nhân với .
Bước 1.3.7.8
Cộng và .
Bước 1.3.7.9
Nhân với .
Bước 1.3.8
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 1.3.9
Rút gọn.
Bước 1.3.9.1
Viết lại biểu thức bằng quy tắc số mũ âm .
Bước 1.3.9.2
Kết hợp các số hạng.
Bước 1.3.9.2.1
Kết hợp và .
Bước 1.3.9.2.2
Cộng và .
Bước 1.3.9.3
Rút gọn mẫu số.
Bước 1.3.9.3.1
Đưa ra ngoài .
Bước 1.3.9.3.1.1
Đưa ra ngoài .
Bước 1.3.9.3.1.2
Đưa ra ngoài .
Bước 1.3.9.3.1.3
Đưa ra ngoài .
Bước 1.3.9.3.2
Áp dụng quy tắc tích số cho .
Bước 1.3.9.3.3
Nâng lên lũy thừa .
Bước 1.3.9.4
Triệt tiêu thừa số chung của và .
Bước 1.3.9.4.1
Đưa ra ngoài .
Bước 1.3.9.4.2
Triệt tiêu các thừa số chung.
Bước 1.3.9.4.2.1
Đưa ra ngoài .
Bước 1.3.9.4.2.2
Triệt tiêu thừa số chung.
Bước 1.3.9.4.2.3
Viết lại biểu thức.
Bước 1.4
Nhân tử số với nghịch đảo của mẫu số.
Bước 1.5
Kết hợp các thừa số.
Bước 1.5.1
Kết hợp và .
Bước 1.5.2
Kết hợp và .
Bước 2
Bước 2.1
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 2.2
Tách giới hạn bằng quy tắc thương số của giới hạn trên giới hạn khi tiến dần đến .
Bước 2.3
Đưa số mũ từ ra ngoài giới hạn bằng quy tắc lũy thừa của giới hạn.
Bước 2.4
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 2.5
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 2.6
Đưa số mũ từ ra ngoài giới hạn bằng quy tắc lũy thừa của giới hạn.
Bước 2.7
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 2.8
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 2.9
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 3
Bước 3.1
Tính giới hạn của bằng cách điền vào cho .
Bước 3.2
Tính giới hạn của bằng cách điền vào cho .
Bước 4
Bước 4.1
Rút gọn tử số.
Bước 4.1.1
Nhân với .
Bước 4.1.2
Trừ khỏi .
Bước 4.1.3
Nâng lên lũy thừa .
Bước 4.2
Rút gọn mẫu số.
Bước 4.2.1
Nhân với .
Bước 4.2.2
Nhân với .
Bước 4.2.3
Trừ khỏi .
Bước 4.2.4
Nâng lên lũy thừa .
Bước 4.3
Nhân .
Bước 4.3.1
Kết hợp và .
Bước 4.3.2
Nhân với .
Bước 5
Kết quả có thể được hiển thị ở nhiều dạng.
Dạng chính xác:
Dạng thập phân: