Giải tích Ví dụ

Tìm Nguyên Hàm f(x)=2e^(4x-6)-2x^3
Bước 1
Có thể tìm hàm số bằng cách tìm tích phân bất định của đạo hàm .
Bước 2
Lập tích phân để giải.
Bước 3
Chia tích phân đơn thành nhiều tích phân.
Bước 4
không đổi đối với , hãy di chuyển ra khỏi tích phân.
Bước 5
Giả sử . Sau đó , nên . Viết lại bằng .
Nhấp để xem thêm các bước...
Bước 5.1
Hãy đặt . Tìm .
Nhấp để xem thêm các bước...
Bước 5.1.1
Tính đạo hàm .
Bước 5.1.2
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 5.1.3
Tính .
Nhấp để xem thêm các bước...
Bước 5.1.3.1
không đổi đối với , nên đạo hàm của đối với .
Bước 5.1.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 5.1.3.3
Nhân với .
Bước 5.1.4
Tìm đạo hàm bằng quy tắc hằng số.
Nhấp để xem thêm các bước...
Bước 5.1.4.1
là hằng số đối với , đạo hàm của đối với .
Bước 5.1.4.2
Cộng .
Bước 5.2
Viết lại bài tập bằng cách dùng .
Bước 6
Kết hợp .
Bước 7
không đổi đối với , hãy di chuyển ra khỏi tích phân.
Bước 8
Rút gọn.
Nhấp để xem thêm các bước...
Bước 8.1
Kết hợp .
Bước 8.2
Triệt tiêu thừa số chung của .
Nhấp để xem thêm các bước...
Bước 8.2.1
Đưa ra ngoài .
Bước 8.2.2
Triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 8.2.2.1
Đưa ra ngoài .
Bước 8.2.2.2
Triệt tiêu thừa số chung.
Bước 8.2.2.3
Viết lại biểu thức.
Bước 9
Tích phân của đối với .
Bước 10
không đổi đối với , hãy di chuyển ra khỏi tích phân.
Bước 11
Theo Quy tắc lũy thừa, tích phân của đối với .
Bước 12
Rút gọn.
Nhấp để xem thêm các bước...
Bước 12.1
Rút gọn.
Bước 12.2
Rút gọn.
Nhấp để xem thêm các bước...
Bước 12.2.1
Kết hợp .
Bước 12.2.2
Triệt tiêu thừa số chung của .
Nhấp để xem thêm các bước...
Bước 12.2.2.1
Đưa ra ngoài .
Bước 12.2.2.2
Triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 12.2.2.2.1
Đưa ra ngoài .
Bước 12.2.2.2.2
Triệt tiêu thừa số chung.
Bước 12.2.2.2.3
Viết lại biểu thức.
Bước 12.2.3
Di chuyển dấu trừ ra phía trước của phân số.
Bước 13
Thay thế tất cả các lần xuất hiện của với .
Bước 14
Câu trả lời là nguyên hàm của hàm số .