Giải tích Ví dụ

Tìm Nguyên Hàm 1+tan(x/2)^2
Bước 1
Viết ở dạng một hàm số.
Bước 2
Có thể tìm hàm số bằng cách tìm tích phân bất định của đạo hàm .
Bước 3
Lập tích phân để giải.
Bước 4
Chia tích phân đơn thành nhiều tích phân.
Bước 5
Áp dụng quy tắc hằng số.
Bước 6
Giả sử . Sau đó , nên . Viết lại bằng .
Nhấp để xem thêm các bước...
Bước 6.1
Hãy đặt . Tìm .
Nhấp để xem thêm các bước...
Bước 6.1.1
Tính đạo hàm .
Bước 6.1.2
không đổi đối với , nên đạo hàm của đối với .
Bước 6.1.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 6.1.4
Nhân với .
Bước 6.2
Viết lại bài tập bằng cách dùng .
Bước 7
Rút gọn.
Nhấp để xem thêm các bước...
Bước 7.1
Nhân với nghịch đảo của phân số để chia cho .
Bước 7.2
Nhân với .
Bước 7.3
Di chuyển sang phía bên trái của .
Bước 8
không đổi đối với , hãy di chuyển ra khỏi tích phân.
Bước 9
Sử dụng đẳng thức Pytago, viết lại ở dạng .
Bước 10
Chia tích phân đơn thành nhiều tích phân.
Bước 11
Áp dụng quy tắc hằng số.
Bước 12
Vì đạo hàm của , tích phân của .
Bước 13
Rút gọn.
Bước 14
Thay thế tất cả các lần xuất hiện của với .
Bước 15
Sắp xếp lại các số hạng.
Bước 16
Câu trả lời là nguyên hàm của hàm số .