Nhập bài toán...
Giải tích Ví dụ
Bước 1
Bước 1.1
Lấy giới hạn của tử số và giới hạn của mẫu số.
Bước 1.2
Tính giới hạn của tử số.
Bước 1.2.1
Tính giới hạn.
Bước 1.2.1.1
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 1.2.1.2
Di chuyển giới hạn vào trong hàm lượng giác vì sin liên tục.
Bước 1.2.1.3
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 1.2.1.4
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 1.2.1.5
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 1.2.2
Tính giới hạn của bằng cách điền vào cho .
Bước 1.2.3
Rút gọn kết quả.
Bước 1.2.3.1
Nhân với .
Bước 1.2.3.2
Cộng và .
Bước 1.2.3.3
Giá trị chính xác của là .
Bước 1.2.3.4
Nhân với .
Bước 1.3
Tính giới hạn của mẫu số.
Bước 1.3.1
Tính giới hạn.
Bước 1.3.1.1
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 1.3.1.2
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 1.3.2
Tính giới hạn của bằng cách điền vào cho .
Bước 1.3.3
Trừ khỏi .
Bước 1.3.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 1.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 2
Vì ở dạng không xác định, nên ta áp dụng quy tắc L'Hôpital. Quy tắc L'Hôpital khẳng định rằng giới hạn của một thương của các hàm số bằng giới hạn của thương của các đạo hàm của chúng.
Bước 3
Bước 3.1
Tính đạo hàm tử số và mẫu số.
Bước 3.2
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 3.3
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng là trong đó và .
Bước 3.3.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 3.3.2
Đạo hàm của đối với là .
Bước 3.3.3
Thay thế tất cả các lần xuất hiện của với .
Bước 3.4
Loại bỏ các dấu ngoặc đơn.
Bước 3.5
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 3.6
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 3.7
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 3.8
Nhân với .
Bước 3.9
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 3.10
Cộng và .
Bước 3.11
Nhân với .
Bước 3.12
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 3.13
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 3.14
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 3.15
Cộng và .
Bước 4
Bước 4.1
Chia cho .
Bước 4.2
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 4.3
Di chuyển giới hạn vào trong hàm lượng giác vì cosin liên tục.
Bước 4.4
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 4.5
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 4.6
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 5
Tính giới hạn của bằng cách điền vào cho .
Bước 6
Bước 6.1
Nhân với .
Bước 6.2
Cộng và .
Bước 6.3
Giá trị chính xác của là .
Bước 6.4
Nhân với .