Giải tích Ví dụ

Tìm Nguyên Hàm 6/(x^3)-4e^(2x)+7
Bước 1
Viết ở dạng một hàm số.
Bước 2
Có thể tìm hàm số bằng cách tìm tích phân bất định của đạo hàm .
Bước 3
Lập tích phân để giải.
Bước 4
Chia tích phân đơn thành nhiều tích phân.
Bước 5
không đổi đối với , hãy di chuyển ra khỏi tích phân.
Bước 6
Áp dụng các quy tắc số mũ cơ bản.
Nhấp để xem thêm các bước...
Bước 6.1
Di chuyển ra ngoài mẫu số bằng cách nâng nó lên lũy thừa .
Bước 6.2
Nhân các số mũ trong .
Nhấp để xem thêm các bước...
Bước 6.2.1
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 6.2.2
Nhân với .
Bước 7
Theo Quy tắc lũy thừa, tích phân của đối với .
Bước 8
Rút gọn.
Nhấp để xem thêm các bước...
Bước 8.1
Kết hợp .
Bước 8.2
Di chuyển sang mẫu số bằng quy tắc số mũ âm .
Bước 9
không đổi đối với , hãy di chuyển ra khỏi tích phân.
Bước 10
Giả sử . Sau đó , nên . Viết lại bằng .
Nhấp để xem thêm các bước...
Bước 10.1
Hãy đặt . Tìm .
Nhấp để xem thêm các bước...
Bước 10.1.1
Tính đạo hàm .
Bước 10.1.2
không đổi đối với , nên đạo hàm của đối với .
Bước 10.1.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 10.1.4
Nhân với .
Bước 10.2
Viết lại bài tập bằng cách dùng .
Bước 11
Kết hợp .
Bước 12
không đổi đối với , hãy di chuyển ra khỏi tích phân.
Bước 13
Rút gọn.
Nhấp để xem thêm các bước...
Bước 13.1
Kết hợp .
Bước 13.2
Triệt tiêu thừa số chung của .
Nhấp để xem thêm các bước...
Bước 13.2.1
Đưa ra ngoài .
Bước 13.2.2
Triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 13.2.2.1
Đưa ra ngoài .
Bước 13.2.2.2
Triệt tiêu thừa số chung.
Bước 13.2.2.3
Viết lại biểu thức.
Bước 13.2.2.4
Chia cho .
Bước 14
Tích phân của đối với .
Bước 15
Áp dụng quy tắc hằng số.
Bước 16
Rút gọn.
Bước 17
Thay thế tất cả các lần xuất hiện của với .
Bước 18
Câu trả lời là nguyên hàm của hàm số .