Nhập bài toán...
Giải tích Ví dụ
Bước 1
Bước 1.1
Tìm đạo hàm bậc một.
Bước 1.1.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 1.1.2
Tính .
Bước 1.1.2.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.1.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.1.2.3
Nhân với .
Bước 1.1.2.4
Kết hợp và .
Bước 1.1.2.5
Nhân với .
Bước 1.1.2.6
Kết hợp và .
Bước 1.1.2.7
Triệt tiêu thừa số chung của và .
Bước 1.1.2.7.1
Đưa ra ngoài .
Bước 1.1.2.7.2
Triệt tiêu các thừa số chung.
Bước 1.1.2.7.2.1
Đưa ra ngoài .
Bước 1.1.2.7.2.2
Triệt tiêu thừa số chung.
Bước 1.1.2.7.2.3
Viết lại biểu thức.
Bước 1.1.2.8
Di chuyển dấu trừ ra phía trước của phân số.
Bước 1.1.3
Tính .
Bước 1.1.3.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.1.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.1.3.3
Nhân với .
Bước 1.2
Tìm đạo hàm bậc hai.
Bước 1.2.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 1.2.2
Tính .
Bước 1.2.2.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.2.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.2.2.3
Nhân với .
Bước 1.2.2.4
Kết hợp và .
Bước 1.2.2.5
Nhân với .
Bước 1.2.2.6
Kết hợp và .
Bước 1.2.2.7
Triệt tiêu thừa số chung của và .
Bước 1.2.2.7.1
Đưa ra ngoài .
Bước 1.2.2.7.2
Triệt tiêu các thừa số chung.
Bước 1.2.2.7.2.1
Đưa ra ngoài .
Bước 1.2.2.7.2.2
Triệt tiêu thừa số chung.
Bước 1.2.2.7.2.3
Viết lại biểu thức.
Bước 1.2.2.7.2.4
Chia cho .
Bước 1.2.3
Tính .
Bước 1.2.3.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.2.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.2.3.3
Nhân với .
Bước 1.3
Đạo hàm bậc hai của đối với là .
Bước 2
Bước 2.1
Đặt đạo hàm bậc hai bằng .
Bước 2.2
Phân tích vế trái của phương trình thành thừa số.
Bước 2.2.1
Đưa ra ngoài .
Bước 2.2.1.1
Đưa ra ngoài .
Bước 2.2.1.2
Đưa ra ngoài .
Bước 2.2.1.3
Đưa ra ngoài .
Bước 2.2.2
Viết lại ở dạng .
Bước 2.2.3
Phân tích thành thừa số.
Bước 2.2.3.1
Vì cả hai số hạng đều là số chính phương, nên ta phân tích thành thừa số bằng công thức hiệu của hai bình phương, trong đó và .
Bước 2.2.3.2
Loại bỏ các dấu ngoặc đơn không cần thiết.
Bước 2.3
Nếu bất kỳ thừa số riêng lẻ nào ở vế trái của phương trình bằng , toàn bộ biểu thức sẽ bằng .
Bước 2.4
Đặt bằng với .
Bước 2.5
Đặt bằng và giải tìm .
Bước 2.5.1
Đặt bằng với .
Bước 2.5.2
Trừ khỏi cả hai vế của phương trình.
Bước 2.6
Đặt bằng và giải tìm .
Bước 2.6.1
Đặt bằng với .
Bước 2.6.2
Cộng cho cả hai vế của phương trình.
Bước 2.7
Đáp án cuối cùng là tất cả các giá trị làm cho đúng.
Bước 3
Bước 3.1
Thay trong để tìm giá trị của .
Bước 3.1.1
Thay thế biến bằng trong biểu thức.
Bước 3.1.2
Rút gọn kết quả.
Bước 3.1.2.1
Rút gọn mỗi số hạng.
Bước 3.1.2.1.1
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 3.1.2.1.2
Nhân .
Bước 3.1.2.1.2.1
Nhân với .
Bước 3.1.2.1.2.2
Nhân với .
Bước 3.1.2.1.3
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 3.1.2.1.4
Nhân với .
Bước 3.1.2.2
Cộng và .
Bước 3.1.2.3
Câu trả lời cuối cùng là .
Bước 3.2
Tìm điểm bằng cách thay thế trong là . Điểm này có thể là một điểm uốn.
Bước 3.3
Thay trong để tìm giá trị của .
Bước 3.3.1
Thay thế biến bằng trong biểu thức.
Bước 3.3.2
Rút gọn kết quả.
Bước 3.3.2.1
Rút gọn mỗi số hạng.
Bước 3.3.2.1.1
Nâng lên lũy thừa .
Bước 3.3.2.1.2
Triệt tiêu thừa số chung .
Bước 3.3.2.1.2.1
Di chuyển dấu âm đầu tiên trong vào tử số.
Bước 3.3.2.1.2.2
Đưa ra ngoài .
Bước 3.3.2.1.2.3
Đưa ra ngoài .
Bước 3.3.2.1.2.4
Triệt tiêu thừa số chung.
Bước 3.3.2.1.2.5
Viết lại biểu thức.
Bước 3.3.2.1.3
Kết hợp và .
Bước 3.3.2.1.4
Nhân với .
Bước 3.3.2.1.5
Nâng lên lũy thừa .
Bước 3.3.2.1.6
Nhân với .
Bước 3.3.2.2
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 3.3.2.3
Kết hợp và .
Bước 3.3.2.4
Kết hợp các tử số trên mẫu số chung.
Bước 3.3.2.5
Rút gọn tử số.
Bước 3.3.2.5.1
Nhân với .
Bước 3.3.2.5.2
Trừ khỏi .
Bước 3.3.2.6
Di chuyển dấu trừ ra phía trước của phân số.
Bước 3.3.2.7
Câu trả lời cuối cùng là .
Bước 3.4
Tìm điểm bằng cách thay thế trong là . Điểm này có thể là một điểm uốn.
Bước 3.5
Thay trong để tìm giá trị của .
Bước 3.5.1
Thay thế biến bằng trong biểu thức.
Bước 3.5.2
Rút gọn kết quả.
Bước 3.5.2.1
Rút gọn mỗi số hạng.
Bước 3.5.2.1.1
Nâng lên lũy thừa .
Bước 3.5.2.1.2
Triệt tiêu thừa số chung .
Bước 3.5.2.1.2.1
Di chuyển dấu âm đầu tiên trong vào tử số.
Bước 3.5.2.1.2.2
Đưa ra ngoài .
Bước 3.5.2.1.2.3
Đưa ra ngoài .
Bước 3.5.2.1.2.4
Triệt tiêu thừa số chung.
Bước 3.5.2.1.2.5
Viết lại biểu thức.
Bước 3.5.2.1.3
Kết hợp và .
Bước 3.5.2.1.4
Nhân với .
Bước 3.5.2.1.5
Di chuyển dấu trừ ra phía trước của phân số.
Bước 3.5.2.1.6
Nâng lên lũy thừa .
Bước 3.5.2.1.7
Nhân với .
Bước 3.5.2.2
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 3.5.2.3
Kết hợp và .
Bước 3.5.2.4
Kết hợp các tử số trên mẫu số chung.
Bước 3.5.2.5
Rút gọn tử số.
Bước 3.5.2.5.1
Nhân với .
Bước 3.5.2.5.2
Cộng và .
Bước 3.5.2.6
Câu trả lời cuối cùng là .
Bước 3.6
Tìm điểm bằng cách thay thế trong là . Điểm này có thể là một điểm uốn.
Bước 3.7
Xác định các điểm có thể là điểm uốn.
Bước 4
Tách thành các khoảng xung quanh các điểm có khả năng là các điểm uốn.
Bước 5
Bước 5.1
Thay thế biến bằng trong biểu thức.
Bước 5.2
Rút gọn kết quả.
Bước 5.2.1
Rút gọn mỗi số hạng.
Bước 5.2.1.1
Nâng lên lũy thừa .
Bước 5.2.1.2
Nhân với .
Bước 5.2.1.3
Nhân với .
Bước 5.2.2
Trừ khỏi .
Bước 5.2.3
Câu trả lời cuối cùng là .
Bước 5.3
Tại , đạo hàm bậc hai là . Vì số này dương, đạo hàm bậc hai tăng trên khoảng .
Tăng trên vì
Tăng trên vì
Bước 6
Bước 6.1
Thay thế biến bằng trong biểu thức.
Bước 6.2
Rút gọn kết quả.
Bước 6.2.1
Rút gọn mỗi số hạng.
Bước 6.2.1.1
Nâng lên lũy thừa .
Bước 6.2.1.2
Nhân với .
Bước 6.2.1.3
Nhân với .
Bước 6.2.2
Trừ khỏi .
Bước 6.2.3
Câu trả lời cuối cùng là .
Bước 6.3
Tại , đạo hàm bậc hai là . Bởi vì đây là số âm, đạo hàm bậc hai giảm trên khoảng
Giảm trên vì
Giảm trên vì
Bước 7
Bước 7.1
Thay thế biến bằng trong biểu thức.
Bước 7.2
Rút gọn kết quả.
Bước 7.2.1
Rút gọn mỗi số hạng.
Bước 7.2.1.1
Nâng lên lũy thừa .
Bước 7.2.1.2
Nhân với .
Bước 7.2.1.3
Nhân với .
Bước 7.2.2
Cộng và .
Bước 7.2.3
Câu trả lời cuối cùng là .
Bước 7.3
Tại , đạo hàm bậc hai là . Vì số này dương, đạo hàm bậc hai tăng trên khoảng .
Tăng trên vì
Tăng trên vì
Bước 8
Bước 8.1
Thay thế biến bằng trong biểu thức.
Bước 8.2
Rút gọn kết quả.
Bước 8.2.1
Rút gọn mỗi số hạng.
Bước 8.2.1.1
Nâng lên lũy thừa .
Bước 8.2.1.2
Nhân với .
Bước 8.2.1.3
Nhân với .
Bước 8.2.2
Cộng và .
Bước 8.2.3
Câu trả lời cuối cùng là .
Bước 8.3
Tại , đạo hàm bậc hai là . Bởi vì đây là số âm, đạo hàm bậc hai giảm trên khoảng
Giảm trên vì
Giảm trên vì
Bước 9
Điểm uốn là điểm nằm trên đường cong mà tại đó độ lõm đổi dấu từ cộng sang trừ hoặc từ trừ sang cộng. Các điểm uốn trong trường hợp này là .
Bước 10