Giải tích Ví dụ

Tìm Nguyên Hàm (2x+3)/(2-x)
Bước 1
Viết ở dạng một hàm số.
Bước 2
Có thể tìm hàm số bằng cách tìm tích phân bất định của đạo hàm .
Bước 3
Lập tích phân để giải.
Bước 4
Sắp xếp lại .
Bước 5
Chia cho .
Nhấp để xem thêm các bước...
Bước 5.1
Lập các đa thức được chia. Nếu không có đủ số hạng cho mọi số mũ, hãy chèn một số hạng có giá trị .
-++
Bước 5.2
Chia số hạng bậc cao nhất trong biểu thức bị chia cho số hạng bậc cao nhất trong biểu thức chia .
-
-++
Bước 5.3
Nhân số hạng thương số mới với số chia.
-
-++
+-
Bước 5.4
Biểu thức cần được trừ khỏi số bị chia, vì vậy hãy đổi tất cả các dấu trong
-
-++
-+
Bước 5.5
Sau khi đổi các dấu, cộng số bị chia cuối cùng của đa thức từ phép nhân để tìm số bị chia mới.
-
-++
-+
+
Bước 5.6
Đáp án cuối cùng là thương cộng với phần còn lại trên số chia.
Bước 6
Chia tích phân đơn thành nhiều tích phân.
Bước 7
Áp dụng quy tắc hằng số.
Bước 8
không đổi đối với , hãy di chuyển ra khỏi tích phân.
Bước 9
Giả sử . Sau đó , nên . Viết lại bằng .
Nhấp để xem thêm các bước...
Bước 9.1
Hãy đặt . Tìm .
Nhấp để xem thêm các bước...
Bước 9.1.1
Viết lại.
Bước 9.1.2
Chia cho .
Bước 9.2
Viết lại bài tập bằng cách dùng .
Bước 10
Di chuyển dấu trừ ra phía trước của phân số.
Bước 11
không đổi đối với , hãy di chuyển ra khỏi tích phân.
Bước 12
Nhân với .
Bước 13
Tích phân của đối với .
Bước 14
Rút gọn.
Bước 15
Thay thế tất cả các lần xuất hiện của với .
Bước 16
Câu trả lời là nguyên hàm của hàm số .