Giải tích Ví dụ

Tìm Giá Trị Cực Đại/Cực Tiểu e^x+e^(-x)
Bước 1
Tìm đạo hàm bậc một của hàm số.
Nhấp để xem thêm các bước...
Bước 1.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 1.2
Tìm đạo hàm bằng cách sử dụng Quy tắc mũ, quy tắc nói rằng trong đó =.
Bước 1.3
Tính .
Nhấp để xem thêm các bước...
Bước 1.3.1
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng trong đó .
Nhấp để xem thêm các bước...
Bước 1.3.1.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 1.3.1.2
Tìm đạo hàm bằng cách sử dụng Quy tắc mũ, quy tắc nói rằng trong đó =.
Bước 1.3.1.3
Thay thế tất cả các lần xuất hiện của với .
Bước 1.3.2
không đổi đối với , nên đạo hàm của đối với .
Bước 1.3.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.3.4
Nhân với .
Bước 1.3.5
Di chuyển sang phía bên trái của .
Bước 1.3.6
Viết lại ở dạng .
Bước 2
Tìm đạo hàm bậc hai của hàm số.
Nhấp để xem thêm các bước...
Bước 2.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc mũ, quy tắc nói rằng trong đó =.
Bước 2.3
Tính .
Nhấp để xem thêm các bước...
Bước 2.3.1
không đổi đối với , nên đạo hàm của đối với .
Bước 2.3.2
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng trong đó .
Nhấp để xem thêm các bước...
Bước 2.3.2.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 2.3.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc mũ, quy tắc nói rằng trong đó =.
Bước 2.3.2.3
Thay thế tất cả các lần xuất hiện của với .
Bước 2.3.3
không đổi đối với , nên đạo hàm của đối với .
Bước 2.3.4
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.3.5
Nhân với .
Bước 2.3.6
Di chuyển sang phía bên trái của .
Bước 2.3.7
Viết lại ở dạng .
Bước 2.3.8
Nhân với .
Bước 2.3.9
Nhân với .
Bước 3
Để tìm các giá trị cực đại địa phương và cực tiểu địa phương của hàm số, đặt đạo hàm bằng và giải.
Bước 4
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 4.1
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 4.1.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 4.1.2
Tìm đạo hàm bằng cách sử dụng Quy tắc mũ, quy tắc nói rằng trong đó =.
Bước 4.1.3
Tính .
Nhấp để xem thêm các bước...
Bước 4.1.3.1
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng trong đó .
Nhấp để xem thêm các bước...
Bước 4.1.3.1.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 4.1.3.1.2
Tìm đạo hàm bằng cách sử dụng Quy tắc mũ, quy tắc nói rằng trong đó =.
Bước 4.1.3.1.3
Thay thế tất cả các lần xuất hiện của với .
Bước 4.1.3.2
không đổi đối với , nên đạo hàm của đối với .
Bước 4.1.3.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 4.1.3.4
Nhân với .
Bước 4.1.3.5
Di chuyển sang phía bên trái của .
Bước 4.1.3.6
Viết lại ở dạng .
Bước 4.2
Đạo hàm bậc nhất của đối với .
Bước 5
Cho đạo hàm bằng rồi giải phương trình .
Nhấp để xem thêm các bước...
Bước 5.1
Cho đạo hàm bằng .
Bước 5.2
Di chuyển sang vế phải của phương trình bằng cách cộng nó vào cả hai vế.
Bước 5.3
Vì các cơ số giống nhau, nên hai biểu thức chỉ bằng nhau khi các số mũ cũng bằng nhau.
Bước 5.4
Giải tìm .
Nhấp để xem thêm các bước...
Bước 5.4.1
Di chuyển tất cả các số hạng chứa sang vế trái của phương trình.
Nhấp để xem thêm các bước...
Bước 5.4.1.1
Cộng cho cả hai vế của phương trình.
Bước 5.4.1.2
Cộng .
Bước 5.4.2
Chia mỗi số hạng trong cho và rút gọn.
Nhấp để xem thêm các bước...
Bước 5.4.2.1
Chia mỗi số hạng trong cho .
Bước 5.4.2.2
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 5.4.2.2.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 5.4.2.2.1.1
Triệt tiêu thừa số chung.
Bước 5.4.2.2.1.2
Chia cho .
Bước 5.4.2.3
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 5.4.2.3.1
Chia cho .
Bước 6
Tìm các giá trị có đạo hàm tại đó không xác định.
Nhấp để xem thêm các bước...
Bước 6.1
Tập xác định của biểu thức là tất cả các số thực trừ trường hợp biểu thức không xác định. Trong trường hợp này, không có số thực nào làm cho biểu thức không xác định.
Bước 7
Các điểm cực trị cần tính.
Bước 8
Tính đạo hàm bậc hai tại . Nếu đạo hàm bậc hai dương, thì đây là một cực tiểu địa phương. Nếu nó âm, thì đây là một cực đại địa phương.
Bước 9
Tính đạo hàm bậc hai.
Nhấp để xem thêm các bước...
Bước 9.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 9.1.1
Bất kỳ đại lượng nào mũ lên đều là .
Bước 9.1.2
Nhân với .
Bước 9.1.3
Bất kỳ đại lượng nào mũ lên đều là .
Bước 9.2
Cộng .
Bước 10
là một cực tiểu địa phương vì giá trị của đạo hàm bậc hai dương. Đây được gọi là phép kiểm định đạo hàm bậc hai.
là cực tiểu địa phương
Bước 11
Tìm giá trị y khi .
Nhấp để xem thêm các bước...
Bước 11.1
Thay thế biến bằng trong biểu thức.
Bước 11.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 11.2.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 11.2.1.1
Bất kỳ đại lượng nào mũ lên đều là .
Bước 11.2.1.2
Nhân với .
Bước 11.2.1.3
Bất kỳ đại lượng nào mũ lên đều là .
Bước 11.2.2
Cộng .
Bước 11.2.3
Câu trả lời cuối cùng là .
Bước 12
Đây là những cực trị địa phương cho .
là một cực tiểu địa phương
Bước 13