Giải tích Ví dụ

Ước Tính Tích Phân tích phân từ 0 đến 1 của x^2e^(-x^3) đối với x
Bước 1
Giả sử . Sau đó , nên . Viết lại bằng .
Nhấp để xem thêm các bước...
Bước 1.1
Hãy đặt . Tìm .
Nhấp để xem thêm các bước...
Bước 1.1.1
Tính đạo hàm .
Bước 1.1.2
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng trong đó .
Nhấp để xem thêm các bước...
Bước 1.1.2.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 1.1.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc mũ, quy tắc nói rằng trong đó =.
Bước 1.1.2.3
Thay thế tất cả các lần xuất hiện của với .
Bước 1.1.3
Tìm đạo hàm.
Nhấp để xem thêm các bước...
Bước 1.1.3.1
không đổi đối với , nên đạo hàm của đối với .
Bước 1.1.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.1.3.3
Nhân với .
Bước 1.1.4
Rút gọn.
Nhấp để xem thêm các bước...
Bước 1.1.4.1
Sắp xếp lại các thừa số của .
Bước 1.1.4.2
Sắp xếp lại các thừa số trong .
Bước 1.2
Thay giới hạn dưới vào cho trong .
Bước 1.3
Rút gọn.
Nhấp để xem thêm các bước...
Bước 1.3.1
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 1.3.2
Nhân với .
Bước 1.3.3
Bất kỳ đại lượng nào mũ lên đều là .
Bước 1.4
Thay giới hạn trên vào cho trong .
Bước 1.5
Rút gọn.
Nhấp để xem thêm các bước...
Bước 1.5.1
Một mũ bất kỳ số nào là một.
Bước 1.5.2
Nhân với .
Bước 1.5.3
Viết lại biểu thức bằng quy tắc số mũ âm .
Bước 1.6
Các giá trị tìm được cho sẽ được sử dụng để tính tích phân xác định.
Bước 1.7
Viết lại bài tập bằng cách dùng , , và các giới hạn mới của phép tích phân.
Bước 2
Di chuyển dấu trừ ra phía trước của phân số.
Bước 3
Áp dụng quy tắc hằng số.
Bước 4
Thay và rút gọn.
Nhấp để xem thêm các bước...
Bước 4.1
Tính tại và tại .
Bước 4.2
Rút gọn.
Nhấp để xem thêm các bước...
Bước 4.2.1
Nhân với .
Bước 4.2.2
Di chuyển sang phía bên trái của .
Bước 4.2.3
Nhân với .
Bước 5
Kết quả có thể được hiển thị ở nhiều dạng.
Dạng chính xác:
Dạng thập phân:
Bước 6