Nhập bài toán...
Giải tích Ví dụ
Bước 1
Có thể tìm hàm số bằng cách tìm tích phân bất định của đạo hàm .
Bước 2
Lập tích phân để giải.
Bước 3
Bước 3.1
Lập các đa thức được chia. Nếu không có đủ số hạng cho mọi số mũ, hãy chèn một số hạng có giá trị .
+ | + | + | + | + |
Bước 3.2
Chia số hạng bậc cao nhất trong biểu thức bị chia cho số hạng bậc cao nhất trong biểu thức chia .
+ | + | + | + | + |
Bước 3.3
Nhân số hạng thương số mới với số chia.
+ | + | + | + | + | |||||||||
+ | + | + |
Bước 3.4
Biểu thức cần được trừ khỏi số bị chia, vì vậy hãy đổi tất cả các dấu trong
+ | + | + | + | + | |||||||||
- | - | - |
Bước 3.5
Sau khi đổi các dấu, cộng số bị chia cuối cùng của đa thức từ phép nhân để tìm số bị chia mới.
+ | + | + | + | + | |||||||||
- | - | - | |||||||||||
Bước 3.6
Đưa các số hạng tiếp theo từ biểu thức bị chia ban đầu xuống dưới biểu thức bị chia hiện tại.
+ | + | + | + | + | |||||||||
- | - | - | |||||||||||
+ |
Bước 3.7
Vì số dư là , nên câu trả lời cuối cùng là thương.
Bước 4
Theo Quy tắc lũy thừa, tích phân của đối với là .
Bước 5
Câu trả lời là nguyên hàm của hàm số .