Giải tích Ví dụ

Ước tính Giới Hạn giới hạn khi x tiến dần đến infinity của (e^x)/(x^4)
Bước 1
Áp dụng quy tắc l'Hôpital
Nhấp để xem thêm các bước...
Bước 1.1
Tính giới hạn của tử số và giới hạn của mẫu số.
Nhấp để xem thêm các bước...
Bước 1.1.1
Lấy giới hạn của tử số và giới hạn của mẫu số.
Bước 1.1.2
Vì số mũ tiến dần đến , nên số lượng tiến dần đến .
Bước 1.1.3
Giới hạn ở vô cực của một đa thức có hệ số của số hạng cao nhất dương là vô cực.
Bước 1.1.4
Vô cùng chia cho vô cùng là không xác định.
Không xác định
Bước 1.2
ở dạng không xác định, nên ta áp dụng quy tắc L'Hôpital. Quy tắc L'Hôpital khẳng định rằng giới hạn của một thương của các hàm số bằng giới hạn của thương của các đạo hàm của chúng.
Bước 1.3
Tìm đạo hàm của tử số và mẫu số.
Nhấp để xem thêm các bước...
Bước 1.3.1
Tính đạo hàm tử số và mẫu số.
Bước 1.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc mũ, quy tắc nói rằng trong đó =.
Bước 1.3.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2
Áp dụng quy tắc l'Hôpital
Nhấp để xem thêm các bước...
Bước 2.1
Tính giới hạn của tử số và giới hạn của mẫu số.
Nhấp để xem thêm các bước...
Bước 2.1.1
Lấy giới hạn của tử số và giới hạn của mẫu số.
Bước 2.1.2
Vì số mũ tiến dần đến , nên số lượng tiến dần đến .
Bước 2.1.3
Giới hạn ở vô cực của một đa thức có hệ số của số hạng cao nhất dương là vô cực.
Bước 2.1.4
Vô cùng chia cho vô cùng là không xác định.
Không xác định
Bước 2.2
ở dạng không xác định, nên ta áp dụng quy tắc L'Hôpital. Quy tắc L'Hôpital khẳng định rằng giới hạn của một thương của các hàm số bằng giới hạn của thương của các đạo hàm của chúng.
Bước 2.3
Tìm đạo hàm của tử số và mẫu số.
Nhấp để xem thêm các bước...
Bước 2.3.1
Tính đạo hàm tử số và mẫu số.
Bước 2.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc mũ, quy tắc nói rằng trong đó =.
Bước 2.3.3
không đổi đối với , nên đạo hàm của đối với .
Bước 2.3.4
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.3.5
Nhân với .
Bước 3
Áp dụng quy tắc l'Hôpital
Nhấp để xem thêm các bước...
Bước 3.1
Tính giới hạn của tử số và giới hạn của mẫu số.
Nhấp để xem thêm các bước...
Bước 3.1.1
Lấy giới hạn của tử số và giới hạn của mẫu số.
Bước 3.1.2
Vì số mũ tiến dần đến , nên số lượng tiến dần đến .
Bước 3.1.3
Giới hạn ở vô cực của một đa thức có hệ số của số hạng cao nhất dương là vô cực.
Bước 3.1.4
Vô cùng chia cho vô cùng là không xác định.
Không xác định
Bước 3.2
ở dạng không xác định, nên ta áp dụng quy tắc L'Hôpital. Quy tắc L'Hôpital khẳng định rằng giới hạn của một thương của các hàm số bằng giới hạn của thương của các đạo hàm của chúng.
Bước 3.3
Tìm đạo hàm của tử số và mẫu số.
Nhấp để xem thêm các bước...
Bước 3.3.1
Tính đạo hàm tử số và mẫu số.
Bước 3.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc mũ, quy tắc nói rằng trong đó =.
Bước 3.3.3
không đổi đối với , nên đạo hàm của đối với .
Bước 3.3.4
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 3.3.5
Nhân với .
Bước 4
Áp dụng quy tắc l'Hôpital
Nhấp để xem thêm các bước...
Bước 4.1
Tính giới hạn của tử số và giới hạn của mẫu số.
Nhấp để xem thêm các bước...
Bước 4.1.1
Lấy giới hạn của tử số và giới hạn của mẫu số.
Bước 4.1.2
Vì số mũ tiến dần đến , nên số lượng tiến dần đến .
Bước 4.1.3
Giới hạn ở vô cực của một đa thức có hệ số của số hạng cao nhất dương là vô cực.
Bước 4.1.4
Vô cùng chia cho vô cùng là không xác định.
Không xác định
Bước 4.2
ở dạng không xác định, nên ta áp dụng quy tắc L'Hôpital. Quy tắc L'Hôpital khẳng định rằng giới hạn của một thương của các hàm số bằng giới hạn của thương của các đạo hàm của chúng.
Bước 4.3
Tìm đạo hàm của tử số và mẫu số.
Nhấp để xem thêm các bước...
Bước 4.3.1
Tính đạo hàm tử số và mẫu số.
Bước 4.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc mũ, quy tắc nói rằng trong đó =.
Bước 4.3.3
không đổi đối với , nên đạo hàm của đối với .
Bước 4.3.4
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 4.3.5
Nhân với .
Bước 5
Vì hàm số tiến dần đến , hằng số dương nhân với hàm số tiến dần đến .
Nhấp để xem thêm các bước...
Bước 5.1
Xét giới hạn với bội số không đổi đã bị loại bỏ.
Bước 5.2
Vì số mũ tiến dần đến , nên số lượng tiến dần đến .