Nhập bài toán...
Giải tích Ví dụ
Bước 1
Viết ở dạng một hàm số.
Bước 2
Có thể tìm hàm số bằng cách tìm tích phân bất định của đạo hàm .
Bước 3
Lập tích phân để giải.
Bước 4
Bước 4.1
Lập các đa thức được chia. Nếu không có đủ số hạng cho mọi số mũ, hãy chèn một số hạng có giá trị .
- | + | + | + |
Bước 4.2
Chia số hạng bậc cao nhất trong biểu thức bị chia cho số hạng bậc cao nhất trong biểu thức chia .
- | + | + | + |
Bước 4.3
Nhân số hạng thương số mới với số chia.
- | + | + | + | ||||||||
+ | - |
Bước 4.4
Biểu thức cần được trừ khỏi số bị chia, vì vậy hãy đổi tất cả các dấu trong
- | + | + | + | ||||||||
- | + |
Bước 4.5
Sau khi đổi các dấu, cộng số bị chia cuối cùng của đa thức từ phép nhân để tìm số bị chia mới.
- | + | + | + | ||||||||
- | + | ||||||||||
+ |
Bước 4.6
Đưa các số hạng tiếp theo từ biểu thức bị chia ban đầu xuống dưới biểu thức bị chia hiện tại.
- | + | + | + | ||||||||
- | + | ||||||||||
+ | + |
Bước 4.7
Chia số hạng bậc cao nhất trong biểu thức bị chia cho số hạng bậc cao nhất trong biểu thức chia .
+ | |||||||||||
- | + | + | + | ||||||||
- | + | ||||||||||
+ | + |
Bước 4.8
Nhân số hạng thương số mới với số chia.
+ | |||||||||||
- | + | + | + | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | - |
Bước 4.9
Biểu thức cần được trừ khỏi số bị chia, vì vậy hãy đổi tất cả các dấu trong
+ | |||||||||||
- | + | + | + | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + |
Bước 4.10
Sau khi đổi các dấu, cộng số bị chia cuối cùng của đa thức từ phép nhân để tìm số bị chia mới.
+ | |||||||||||
- | + | + | + | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ |
Bước 4.11
Đưa các số hạng tiếp theo từ biểu thức bị chia ban đầu xuống dưới biểu thức bị chia hiện tại.
+ | |||||||||||
- | + | + | + | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | + |
Bước 4.12
Chia số hạng bậc cao nhất trong biểu thức bị chia cho số hạng bậc cao nhất trong biểu thức chia .
+ | + | ||||||||||
- | + | + | + | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | + |
Bước 4.13
Nhân số hạng thương số mới với số chia.
+ | + | ||||||||||
- | + | + | + | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | - |
Bước 4.14
Biểu thức cần được trừ khỏi số bị chia, vì vậy hãy đổi tất cả các dấu trong
+ | + | ||||||||||
- | + | + | + | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + |
Bước 4.15
Sau khi đổi các dấu, cộng số bị chia cuối cùng của đa thức từ phép nhân để tìm số bị chia mới.
+ | + | ||||||||||
- | + | + | + | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ |
Bước 4.16
Đáp án cuối cùng là thương cộng với phần còn lại trên số chia.
Bước 5
Chia tích phân đơn thành nhiều tích phân.
Bước 6
Theo Quy tắc lũy thừa, tích phân của đối với là .
Bước 7
Theo Quy tắc lũy thừa, tích phân của đối với là .
Bước 8
Áp dụng quy tắc hằng số.
Bước 9
Bước 9.1
Hãy đặt . Tìm .
Bước 9.1.1
Tính đạo hàm .
Bước 9.1.2
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 9.1.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 9.1.4
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 9.1.5
Cộng và .
Bước 9.2
Viết lại bài tập bằng cách dùng và .
Bước 10
Tích phân của đối với là .
Bước 11
Rút gọn.
Bước 12
Thay thế tất cả các lần xuất hiện của với .
Bước 13
Câu trả lời là nguyên hàm của hàm số .