Giải tích Ví dụ

Tìm Giá Trị Cực Đại/Cực Tiểu f(x) = square root of 2x-5
Bước 1
Tìm đạo hàm bậc một của hàm số.
Nhấp để xem thêm các bước...
Bước 1.1
Sử dụng để viết lại ở dạng .
Bước 1.2
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng trong đó .
Nhấp để xem thêm các bước...
Bước 1.2.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 1.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.2.3
Thay thế tất cả các lần xuất hiện của với .
Bước 1.3
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 1.4
Kết hợp .
Bước 1.5
Kết hợp các tử số trên mẫu số chung.
Bước 1.6
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 1.6.1
Nhân với .
Bước 1.6.2
Trừ khỏi .
Bước 1.7
Kết hợp các phân số.
Nhấp để xem thêm các bước...
Bước 1.7.1
Di chuyển dấu trừ ra phía trước của phân số.
Bước 1.7.2
Kết hợp .
Bước 1.7.3
Di chuyển sang mẫu số bằng quy tắc số mũ âm .
Bước 1.8
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 1.9
không đổi đối với , nên đạo hàm của đối với .
Bước 1.10
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.11
Nhân với .
Bước 1.12
là hằng số đối với , đạo hàm của đối với .
Bước 1.13
Rút gọn các số hạng.
Nhấp để xem thêm các bước...
Bước 1.13.1
Cộng .
Bước 1.13.2
Kết hợp .
Bước 1.13.3
Triệt tiêu thừa số chung.
Bước 1.13.4
Viết lại biểu thức.
Bước 2
Tìm đạo hàm bậc hai của hàm số.
Nhấp để xem thêm các bước...
Bước 2.1
Áp dụng các quy tắc số mũ cơ bản.
Nhấp để xem thêm các bước...
Bước 2.1.1
Viết lại ở dạng .
Bước 2.1.2
Nhân các số mũ trong .
Nhấp để xem thêm các bước...
Bước 2.1.2.1
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 2.1.2.2
Kết hợp .
Bước 2.1.2.3
Di chuyển dấu trừ ra phía trước của phân số.
Bước 2.2
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng trong đó .
Nhấp để xem thêm các bước...
Bước 2.2.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 2.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.2.3
Thay thế tất cả các lần xuất hiện của với .
Bước 2.3
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 2.4
Kết hợp .
Bước 2.5
Kết hợp các tử số trên mẫu số chung.
Bước 2.6
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 2.6.1
Nhân với .
Bước 2.6.2
Trừ khỏi .
Bước 2.7
Kết hợp các phân số.
Nhấp để xem thêm các bước...
Bước 2.7.1
Di chuyển dấu trừ ra phía trước của phân số.
Bước 2.7.2
Kết hợp .
Bước 2.7.3
Di chuyển sang mẫu số bằng quy tắc số mũ âm .
Bước 2.8
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 2.9
không đổi đối với , nên đạo hàm của đối với .
Bước 2.10
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.11
Nhân với .
Bước 2.12
là hằng số đối với , đạo hàm của đối với .
Bước 2.13
Rút gọn các số hạng.
Nhấp để xem thêm các bước...
Bước 2.13.1
Cộng .
Bước 2.13.2
Nhân với .
Bước 2.13.3
Kết hợp .
Bước 2.13.4
Đưa ra ngoài .
Bước 2.14
Triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 2.14.1
Đưa ra ngoài .
Bước 2.14.2
Triệt tiêu thừa số chung.
Bước 2.14.3
Viết lại biểu thức.
Bước 2.15
Di chuyển dấu trừ ra phía trước của phân số.
Bước 3
Để tìm các giá trị cực đại địa phương và cực tiểu địa phương của hàm số, đặt đạo hàm bằng và giải.
Bước 4
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 4.1
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 4.1.1
Sử dụng để viết lại ở dạng .
Bước 4.1.2
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng trong đó .
Nhấp để xem thêm các bước...
Bước 4.1.2.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 4.1.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 4.1.2.3
Thay thế tất cả các lần xuất hiện của với .
Bước 4.1.3
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 4.1.4
Kết hợp .
Bước 4.1.5
Kết hợp các tử số trên mẫu số chung.
Bước 4.1.6
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 4.1.6.1
Nhân với .
Bước 4.1.6.2
Trừ khỏi .
Bước 4.1.7
Kết hợp các phân số.
Nhấp để xem thêm các bước...
Bước 4.1.7.1
Di chuyển dấu trừ ra phía trước của phân số.
Bước 4.1.7.2
Kết hợp .
Bước 4.1.7.3
Di chuyển sang mẫu số bằng quy tắc số mũ âm .
Bước 4.1.8
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 4.1.9
không đổi đối với , nên đạo hàm của đối với .
Bước 4.1.10
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 4.1.11
Nhân với .
Bước 4.1.12
là hằng số đối với , đạo hàm của đối với .
Bước 4.1.13
Rút gọn các số hạng.
Nhấp để xem thêm các bước...
Bước 4.1.13.1
Cộng .
Bước 4.1.13.2
Kết hợp .
Bước 4.1.13.3
Triệt tiêu thừa số chung.
Bước 4.1.13.4
Viết lại biểu thức.
Bước 4.2
Đạo hàm bậc nhất của đối với .
Bước 5
Cho đạo hàm bằng rồi giải phương trình .
Nhấp để xem thêm các bước...
Bước 5.1
Cho đạo hàm bằng .
Bước 5.2
Cho tử bằng không.
Bước 5.3
, nên không có đáp án.
Không có đáp án
Không có đáp án
Bước 6
Tìm các giá trị có đạo hàm tại đó không xác định.
Nhấp để xem thêm các bước...
Bước 6.1
Chuyển đổi các biểu thức có số mũ dạng phân số thành các căn thức
Nhấp để xem thêm các bước...
Bước 6.1.1
Áp dụng quy tắc để viết lại dạng lũy thừa dưới dạng căn thức.
Bước 6.1.2
Bất kỳ đại lượng nào mũ lên đều là chính nó.
Bước 6.2
Đặt mẫu số trong bằng để tìm nơi biểu thức không xác định.
Bước 6.3
Giải tìm .
Nhấp để xem thêm các bước...
Bước 6.3.1
Để loại bỏ dấu căn ở vế trái của phương trình, ta bình phương cả hai vế của phương trình.
Bước 6.3.2
Rút gọn mỗi vế của phương trình.
Nhấp để xem thêm các bước...
Bước 6.3.2.1
Sử dụng để viết lại ở dạng .
Bước 6.3.2.2
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 6.3.2.2.1
Rút gọn .
Nhấp để xem thêm các bước...
Bước 6.3.2.2.1.1
Nhân các số mũ trong .
Nhấp để xem thêm các bước...
Bước 6.3.2.2.1.1.1
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 6.3.2.2.1.1.2
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 6.3.2.2.1.1.2.1
Triệt tiêu thừa số chung.
Bước 6.3.2.2.1.1.2.2
Viết lại biểu thức.
Bước 6.3.2.2.1.2
Rút gọn.
Bước 6.3.2.3
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 6.3.2.3.1
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 6.3.3
Giải tìm .
Nhấp để xem thêm các bước...
Bước 6.3.3.1
Cộng cho cả hai vế của phương trình.
Bước 6.3.3.2
Chia mỗi số hạng trong cho và rút gọn.
Nhấp để xem thêm các bước...
Bước 6.3.3.2.1
Chia mỗi số hạng trong cho .
Bước 6.3.3.2.2
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 6.3.3.2.2.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 6.3.3.2.2.1.1
Triệt tiêu thừa số chung.
Bước 6.3.3.2.2.1.2
Chia cho .
Bước 6.4
Đặt số trong dấu căn trong nhỏ hơn để tìm nơi biểu thức không xác định.
Bước 6.5
Giải tìm .
Nhấp để xem thêm các bước...
Bước 6.5.1
Cộng cho cả hai vế của bất đẳng thức.
Bước 6.5.2
Chia mỗi số hạng trong cho và rút gọn.
Nhấp để xem thêm các bước...
Bước 6.5.2.1
Chia mỗi số hạng trong cho .
Bước 6.5.2.2
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 6.5.2.2.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 6.5.2.2.1.1
Triệt tiêu thừa số chung.
Bước 6.5.2.2.1.2
Chia cho .
Bước 6.6
Phương trình không xác định tại mẫu số bằng , đối số của một căn bậc hai nhỏ hơn , hoặc đối số của một logarit nhỏ hơn hoặc bằng .
Bước 7
Các điểm cực trị cần tính.
Bước 8
Tính đạo hàm bậc hai tại . Nếu đạo hàm bậc hai dương, thì đây là một cực tiểu địa phương. Nếu nó âm, thì đây là một cực đại địa phương.
Bước 9
Tính đạo hàm bậc hai.
Nhấp để xem thêm các bước...
Bước 9.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 9.1.1
Triệt tiêu thừa số chung.
Bước 9.1.2
Viết lại biểu thức.
Bước 9.2
Rút gọn biểu thức.
Nhấp để xem thêm các bước...
Bước 9.2.1
Trừ khỏi .
Bước 9.2.2
Viết lại ở dạng .
Bước 9.2.3
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 9.3
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 9.3.1
Triệt tiêu thừa số chung.
Bước 9.3.2
Viết lại biểu thức.
Bước 9.4
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 9.5
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Không xác định
Bước 10
Vì phép kiểm định đạo hàm bậc nhất thất bại, nên không có cực trị địa phương.
Không có cực trị địa phương
Bước 11