Giải tích Ví dụ

Tìm Giá Trị Cực Đại/Cực Tiểu -2xe^(1-x^2)
Bước 1
Tìm đạo hàm bậc một của hàm số.
Nhấp để xem thêm các bước...
Bước 1.1
không đổi đối với , nên đạo hàm của đối với .
Bước 1.2
Tìm đạo hàm bằng cách sử dụng quy tắc tích số, quy tắc nói rằng trong đó .
Bước 1.3
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng trong đó .
Nhấp để xem thêm các bước...
Bước 1.3.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 1.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc mũ, quy tắc nói rằng trong đó =.
Bước 1.3.3
Thay thế tất cả các lần xuất hiện của với .
Bước 1.4
Tìm đạo hàm.
Nhấp để xem thêm các bước...
Bước 1.4.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 1.4.2
là hằng số đối với , đạo hàm của đối với .
Bước 1.4.3
Cộng .
Bước 1.4.4
không đổi đối với , nên đạo hàm của đối với .
Bước 1.4.5
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.4.6
Nhân với .
Bước 1.5
Nâng lên lũy thừa .
Bước 1.6
Nâng lên lũy thừa .
Bước 1.7
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 1.8
Rút gọn biểu thức.
Nhấp để xem thêm các bước...
Bước 1.8.1
Cộng .
Bước 1.8.2
Di chuyển sang phía bên trái của .
Bước 1.9
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.10
Nhân với .
Bước 1.11
Rút gọn.
Nhấp để xem thêm các bước...
Bước 1.11.1
Áp dụng thuộc tính phân phối.
Bước 1.11.2
Nhân với .
Bước 1.11.3
Sắp xếp lại các số hạng.
Bước 1.11.4
Sắp xếp lại các thừa số trong .
Bước 2
Tìm đạo hàm bậc hai của hàm số.
Nhấp để xem thêm các bước...
Bước 2.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 2.2
Tính .
Nhấp để xem thêm các bước...
Bước 2.2.1
không đổi đối với , nên đạo hàm của đối với .
Bước 2.2.2
Tìm đạo hàm bằng cách sử dụng quy tắc tích số, quy tắc nói rằng trong đó .
Bước 2.2.3
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng trong đó .
Nhấp để xem thêm các bước...
Bước 2.2.3.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 2.2.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc mũ, quy tắc nói rằng trong đó =.
Bước 2.2.3.3
Thay thế tất cả các lần xuất hiện của với .
Bước 2.2.4
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 2.2.5
là hằng số đối với , đạo hàm của đối với .
Bước 2.2.6
không đổi đối với , nên đạo hàm của đối với .
Bước 2.2.7
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.2.8
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.2.9
Nhân với .
Bước 2.2.10
Trừ khỏi .
Bước 2.2.11
Nhân với bằng cách cộng các số mũ.
Nhấp để xem thêm các bước...
Bước 2.2.11.1
Di chuyển .
Bước 2.2.11.2
Nhân với .
Nhấp để xem thêm các bước...
Bước 2.2.11.2.1
Nâng lên lũy thừa .
Bước 2.2.11.2.2
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 2.2.11.3
Cộng .
Bước 2.2.12
Di chuyển sang phía bên trái của .
Bước 2.3
Tính .
Nhấp để xem thêm các bước...
Bước 2.3.1
không đổi đối với , nên đạo hàm của đối với .
Bước 2.3.2
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng trong đó .
Nhấp để xem thêm các bước...
Bước 2.3.2.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 2.3.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc mũ, quy tắc nói rằng trong đó =.
Bước 2.3.2.3
Thay thế tất cả các lần xuất hiện của với .
Bước 2.3.3
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 2.3.4
là hằng số đối với , đạo hàm của đối với .
Bước 2.3.5
không đổi đối với , nên đạo hàm của đối với .
Bước 2.3.6
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.3.7
Nhân với .
Bước 2.3.8
Trừ khỏi .
Bước 2.3.9
Nhân với .
Bước 2.4
Rút gọn.
Nhấp để xem thêm các bước...
Bước 2.4.1
Áp dụng thuộc tính phân phối.
Bước 2.4.2
Kết hợp các số hạng.
Nhấp để xem thêm các bước...
Bước 2.4.2.1
Nhân với .
Bước 2.4.2.2
Nhân với .
Bước 2.4.2.3
Cộng .
Bước 2.4.3
Sắp xếp lại các số hạng.
Bước 2.4.4
Sắp xếp lại các thừa số trong .
Bước 3
Để tìm các giá trị cực đại địa phương và cực tiểu địa phương của hàm số, đặt đạo hàm bằng và giải.
Bước 4
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 4.1
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 4.1.1
không đổi đối với , nên đạo hàm của đối với .
Bước 4.1.2
Tìm đạo hàm bằng cách sử dụng quy tắc tích số, quy tắc nói rằng trong đó .
Bước 4.1.3
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng trong đó .
Nhấp để xem thêm các bước...
Bước 4.1.3.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 4.1.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc mũ, quy tắc nói rằng trong đó =.
Bước 4.1.3.3
Thay thế tất cả các lần xuất hiện của với .
Bước 4.1.4
Tìm đạo hàm.
Nhấp để xem thêm các bước...
Bước 4.1.4.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 4.1.4.2
là hằng số đối với , đạo hàm của đối với .
Bước 4.1.4.3
Cộng .
Bước 4.1.4.4
không đổi đối với , nên đạo hàm của đối với .
Bước 4.1.4.5
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 4.1.4.6
Nhân với .
Bước 4.1.5
Nâng lên lũy thừa .
Bước 4.1.6
Nâng lên lũy thừa .
Bước 4.1.7
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 4.1.8
Rút gọn biểu thức.
Nhấp để xem thêm các bước...
Bước 4.1.8.1
Cộng .
Bước 4.1.8.2
Di chuyển sang phía bên trái của .
Bước 4.1.9
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 4.1.10
Nhân với .
Bước 4.1.11
Rút gọn.
Nhấp để xem thêm các bước...
Bước 4.1.11.1
Áp dụng thuộc tính phân phối.
Bước 4.1.11.2
Nhân với .
Bước 4.1.11.3
Sắp xếp lại các số hạng.
Bước 4.1.11.4
Sắp xếp lại các thừa số trong .
Bước 4.2
Đạo hàm bậc nhất của đối với .
Bước 5
Cho đạo hàm bằng rồi giải phương trình .
Nhấp để xem thêm các bước...
Bước 5.1
Cho đạo hàm bằng .
Bước 5.2
Đưa ra ngoài .
Nhấp để xem thêm các bước...
Bước 5.2.1
Đưa ra ngoài .
Bước 5.2.2
Đưa ra ngoài .
Bước 5.2.3
Đưa ra ngoài .
Bước 5.3
Nếu bất kỳ thừa số riêng lẻ nào ở vế trái của phương trình bằng , toàn bộ biểu thức sẽ bằng .
Bước 5.4
Đặt bằng và giải tìm .
Nhấp để xem thêm các bước...
Bước 5.4.1
Đặt bằng với .
Bước 5.4.2
Giải để tìm .
Nhấp để xem thêm các bước...
Bước 5.4.2.1
Lấy logarit tự nhiên của cả hai vế của phương trình để loại bỏ biến khỏi số mũ.
Bước 5.4.2.2
Không thể giải phương trình vì không xác định.
Không xác định
Bước 5.4.2.3
Không có đáp án nào cho
Không có đáp án
Không có đáp án
Không có đáp án
Bước 5.5
Đặt bằng và giải tìm .
Nhấp để xem thêm các bước...
Bước 5.5.1
Đặt bằng với .
Bước 5.5.2
Giải để tìm .
Nhấp để xem thêm các bước...
Bước 5.5.2.1
Cộng cho cả hai vế của phương trình.
Bước 5.5.2.2
Chia mỗi số hạng trong cho và rút gọn.
Nhấp để xem thêm các bước...
Bước 5.5.2.2.1
Chia mỗi số hạng trong cho .
Bước 5.5.2.2.2
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 5.5.2.2.2.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 5.5.2.2.2.1.1
Triệt tiêu thừa số chung.
Bước 5.5.2.2.2.1.2
Chia cho .
Bước 5.5.2.3
Lấy căn đã chỉ định của cả hai vế của phương trình để loại bỏ số mũ ở vế trái.
Bước 5.5.2.4
Rút gọn .
Nhấp để xem thêm các bước...
Bước 5.5.2.4.1
Viết lại ở dạng .
Bước 5.5.2.4.2
Bất cứ nghiệm nào của đều là .
Bước 5.5.2.4.3
Nhân với .
Bước 5.5.2.4.4
Kết hợp và rút gọn mẫu số.
Nhấp để xem thêm các bước...
Bước 5.5.2.4.4.1
Nhân với .
Bước 5.5.2.4.4.2
Nâng lên lũy thừa .
Bước 5.5.2.4.4.3
Nâng lên lũy thừa .
Bước 5.5.2.4.4.4
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 5.5.2.4.4.5
Cộng .
Bước 5.5.2.4.4.6
Viết lại ở dạng .
Nhấp để xem thêm các bước...
Bước 5.5.2.4.4.6.1
Sử dụng để viết lại ở dạng .
Bước 5.5.2.4.4.6.2
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 5.5.2.4.4.6.3
Kết hợp .
Bước 5.5.2.4.4.6.4
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 5.5.2.4.4.6.4.1
Triệt tiêu thừa số chung.
Bước 5.5.2.4.4.6.4.2
Viết lại biểu thức.
Bước 5.5.2.4.4.6.5
Tính số mũ.
Bước 5.5.2.5
Đáp án hoàn chỉnh là kết quả của cả hai phần dương và âm của đáp án.
Nhấp để xem thêm các bước...
Bước 5.5.2.5.1
Đầu tiên, sử dụng giá trị dương của để tìm đáp án đầu tiên.
Bước 5.5.2.5.2
Tiếp theo, sử dụng giá trị âm của để tìm đáp án thứ hai.
Bước 5.5.2.5.3
Đáp án hoàn chỉnh là kết quả của cả hai phần dương và âm của đáp án.
Bước 5.6
Đáp án cuối cùng là tất cả các giá trị làm cho đúng.
Bước 6
Tìm các giá trị có đạo hàm tại đó không xác định.
Nhấp để xem thêm các bước...
Bước 6.1
Tập xác định của biểu thức là tất cả các số thực trừ trường hợp biểu thức không xác định. Trong trường hợp này, không có số thực nào làm cho biểu thức không xác định.
Bước 7
Các điểm cực trị cần tính.
Bước 8
Tính đạo hàm bậc hai tại . Nếu đạo hàm bậc hai dương, thì đây là một cực tiểu địa phương. Nếu nó âm, thì đây là một cực đại địa phương.
Bước 9
Tính đạo hàm bậc hai.
Nhấp để xem thêm các bước...
Bước 9.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 9.1.1
Áp dụng quy tắc tích số cho .
Bước 9.1.2
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 9.1.2.1
Viết lại ở dạng .
Bước 9.1.2.2
Nâng lên lũy thừa .
Bước 9.1.2.3
Viết lại ở dạng .
Nhấp để xem thêm các bước...
Bước 9.1.2.3.1
Đưa ra ngoài .
Bước 9.1.2.3.2
Viết lại ở dạng .
Bước 9.1.2.4
Đưa các số hạng dưới căn thức ra ngoài.
Bước 9.1.3
Nâng lên lũy thừa .
Bước 9.1.4
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 9.1.4.1
Đưa ra ngoài .
Bước 9.1.4.2
Triệt tiêu thừa số chung.
Bước 9.1.4.3
Viết lại biểu thức.
Bước 9.1.5
Nhân với .
Bước 9.1.6
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 9.1.6.1
Áp dụng quy tắc tích số cho .
Bước 9.1.6.2
Viết lại ở dạng .
Nhấp để xem thêm các bước...
Bước 9.1.6.2.1
Sử dụng để viết lại ở dạng .
Bước 9.1.6.2.2
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 9.1.6.2.3
Kết hợp .
Bước 9.1.6.2.4
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 9.1.6.2.4.1
Triệt tiêu thừa số chung.
Bước 9.1.6.2.4.2
Viết lại biểu thức.
Bước 9.1.6.2.5
Tính số mũ.
Bước 9.1.6.3
Nâng lên lũy thừa .
Bước 9.1.6.4
Triệt tiêu thừa số chung của .
Nhấp để xem thêm các bước...
Bước 9.1.6.4.1
Đưa ra ngoài .
Bước 9.1.6.4.2
Triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 9.1.6.4.2.1
Đưa ra ngoài .
Bước 9.1.6.4.2.2
Triệt tiêu thừa số chung.
Bước 9.1.6.4.2.3
Viết lại biểu thức.
Bước 9.1.7
Viết ở dạng một phân số với một mẫu số chung.
Bước 9.1.8
Kết hợp các tử số trên mẫu số chung.
Bước 9.1.9
Trừ khỏi .
Bước 9.1.10
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 9.1.10.1
Đưa ra ngoài .
Bước 9.1.10.2
Triệt tiêu thừa số chung.
Bước 9.1.10.3
Viết lại biểu thức.
Bước 9.1.11
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 9.1.11.1
Áp dụng quy tắc tích số cho .
Bước 9.1.11.2
Viết lại ở dạng .
Nhấp để xem thêm các bước...
Bước 9.1.11.2.1
Sử dụng để viết lại ở dạng .
Bước 9.1.11.2.2
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 9.1.11.2.3
Kết hợp .
Bước 9.1.11.2.4
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 9.1.11.2.4.1
Triệt tiêu thừa số chung.
Bước 9.1.11.2.4.2
Viết lại biểu thức.
Bước 9.1.11.2.5
Tính số mũ.
Bước 9.1.11.3
Nâng lên lũy thừa .
Bước 9.1.11.4
Triệt tiêu thừa số chung của .
Nhấp để xem thêm các bước...
Bước 9.1.11.4.1
Đưa ra ngoài .
Bước 9.1.11.4.2
Triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 9.1.11.4.2.1
Đưa ra ngoài .
Bước 9.1.11.4.2.2
Triệt tiêu thừa số chung.
Bước 9.1.11.4.2.3
Viết lại biểu thức.
Bước 9.1.12
Viết ở dạng một phân số với một mẫu số chung.
Bước 9.1.13
Kết hợp các tử số trên mẫu số chung.
Bước 9.1.14
Trừ khỏi .
Bước 9.2
Cộng .
Bước 10
là một cực tiểu địa phương vì giá trị của đạo hàm bậc hai dương. Đây được gọi là phép kiểm định đạo hàm bậc hai.
là cực tiểu địa phương
Bước 11
Tìm giá trị y khi .
Nhấp để xem thêm các bước...
Bước 11.1
Thay thế biến bằng trong biểu thức.
Bước 11.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 11.2.1
Rút gọn biểu thức bằng cách triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 11.2.1.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 11.2.1.1.1
Đưa ra ngoài .
Bước 11.2.1.1.2
Triệt tiêu thừa số chung.
Bước 11.2.1.1.3
Viết lại biểu thức.
Bước 11.2.1.2
Viết lại ở dạng .
Bước 11.2.2
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 11.2.2.1
Áp dụng quy tắc tích số cho .
Bước 11.2.2.2
Viết lại ở dạng .
Nhấp để xem thêm các bước...
Bước 11.2.2.2.1
Sử dụng để viết lại ở dạng .
Bước 11.2.2.2.2
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 11.2.2.2.3
Kết hợp .
Bước 11.2.2.2.4
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 11.2.2.2.4.1
Triệt tiêu thừa số chung.
Bước 11.2.2.2.4.2
Viết lại biểu thức.
Bước 11.2.2.2.5
Tính số mũ.
Bước 11.2.2.3
Nâng lên lũy thừa .
Bước 11.2.2.4
Triệt tiêu thừa số chung của .
Nhấp để xem thêm các bước...
Bước 11.2.2.4.1
Đưa ra ngoài .
Bước 11.2.2.4.2
Triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 11.2.2.4.2.1
Đưa ra ngoài .
Bước 11.2.2.4.2.2
Triệt tiêu thừa số chung.
Bước 11.2.2.4.2.3
Viết lại biểu thức.
Bước 11.2.3
Rút gọn biểu thức.
Nhấp để xem thêm các bước...
Bước 11.2.3.1
Viết ở dạng một phân số với một mẫu số chung.
Bước 11.2.3.2
Kết hợp các tử số trên mẫu số chung.
Bước 11.2.3.3
Trừ khỏi .
Bước 11.2.4
Câu trả lời cuối cùng là .
Bước 12
Tính đạo hàm bậc hai tại . Nếu đạo hàm bậc hai dương, thì đây là một cực tiểu địa phương. Nếu nó âm, thì đây là một cực đại địa phương.
Bước 13
Tính đạo hàm bậc hai.
Nhấp để xem thêm các bước...
Bước 13.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 13.1.1
Sử dụng quy tắc lũy thừa để phân phối các số mũ.
Nhấp để xem thêm các bước...
Bước 13.1.1.1
Áp dụng quy tắc tích số cho .
Bước 13.1.1.2
Áp dụng quy tắc tích số cho .
Bước 13.1.2
Nâng lên lũy thừa .
Bước 13.1.3
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 13.1.3.1
Viết lại ở dạng .
Bước 13.1.3.2
Nâng lên lũy thừa .
Bước 13.1.3.3
Viết lại ở dạng .
Nhấp để xem thêm các bước...
Bước 13.1.3.3.1
Đưa ra ngoài .
Bước 13.1.3.3.2
Viết lại ở dạng .
Bước 13.1.3.4
Đưa các số hạng dưới căn thức ra ngoài.
Bước 13.1.4
Nâng lên lũy thừa .
Bước 13.1.5
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 13.1.5.1
Di chuyển dấu âm đầu tiên trong vào tử số.
Bước 13.1.5.2
Đưa ra ngoài .
Bước 13.1.5.3
Triệt tiêu thừa số chung.
Bước 13.1.5.4
Viết lại biểu thức.
Bước 13.1.6
Nhân với .
Bước 13.1.7
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 13.1.7.1
Sử dụng quy tắc lũy thừa để phân phối các số mũ.
Nhấp để xem thêm các bước...
Bước 13.1.7.1.1
Áp dụng quy tắc tích số cho .
Bước 13.1.7.1.2
Áp dụng quy tắc tích số cho .
Bước 13.1.7.2
Nhân với bằng cách cộng các số mũ.
Nhấp để xem thêm các bước...
Bước 13.1.7.2.1
Di chuyển .
Bước 13.1.7.2.2
Nhân với .
Nhấp để xem thêm các bước...
Bước 13.1.7.2.2.1
Nâng lên lũy thừa .
Bước 13.1.7.2.2.2
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 13.1.7.2.3
Cộng .
Bước 13.1.7.3
Nâng lên lũy thừa .
Bước 13.1.7.4
Viết lại ở dạng .
Nhấp để xem thêm các bước...
Bước 13.1.7.4.1
Sử dụng để viết lại ở dạng .
Bước 13.1.7.4.2
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 13.1.7.4.3
Kết hợp .
Bước 13.1.7.4.4
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 13.1.7.4.4.1
Triệt tiêu thừa số chung.
Bước 13.1.7.4.4.2
Viết lại biểu thức.
Bước 13.1.7.4.5
Tính số mũ.
Bước 13.1.7.5
Nâng lên lũy thừa .
Bước 13.1.7.6
Triệt tiêu thừa số chung của .
Nhấp để xem thêm các bước...
Bước 13.1.7.6.1
Đưa ra ngoài .
Bước 13.1.7.6.2
Triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 13.1.7.6.2.1
Đưa ra ngoài .
Bước 13.1.7.6.2.2
Triệt tiêu thừa số chung.
Bước 13.1.7.6.2.3
Viết lại biểu thức.
Bước 13.1.8
Viết ở dạng một phân số với một mẫu số chung.
Bước 13.1.9
Kết hợp các tử số trên mẫu số chung.
Bước 13.1.10
Trừ khỏi .
Bước 13.1.11
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 13.1.11.1
Di chuyển dấu âm đầu tiên trong vào tử số.
Bước 13.1.11.2
Đưa ra ngoài .
Bước 13.1.11.3
Triệt tiêu thừa số chung.
Bước 13.1.11.4
Viết lại biểu thức.
Bước 13.1.12
Nhân với .
Bước 13.1.13
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 13.1.13.1
Sử dụng quy tắc lũy thừa để phân phối các số mũ.
Nhấp để xem thêm các bước...
Bước 13.1.13.1.1
Áp dụng quy tắc tích số cho .
Bước 13.1.13.1.2
Áp dụng quy tắc tích số cho .
Bước 13.1.13.2
Nhân với bằng cách cộng các số mũ.
Nhấp để xem thêm các bước...
Bước 13.1.13.2.1
Di chuyển .
Bước 13.1.13.2.2
Nhân với .
Nhấp để xem thêm các bước...
Bước 13.1.13.2.2.1
Nâng lên lũy thừa .
Bước 13.1.13.2.2.2
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 13.1.13.2.3
Cộng .
Bước 13.1.13.3
Nâng lên lũy thừa .
Bước 13.1.13.4
Viết lại ở dạng .
Nhấp để xem thêm các bước...
Bước 13.1.13.4.1
Sử dụng để viết lại ở dạng .
Bước 13.1.13.4.2
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 13.1.13.4.3
Kết hợp .
Bước 13.1.13.4.4
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 13.1.13.4.4.1
Triệt tiêu thừa số chung.
Bước 13.1.13.4.4.2
Viết lại biểu thức.
Bước 13.1.13.4.5
Tính số mũ.
Bước 13.1.13.5
Nâng lên lũy thừa .
Bước 13.1.13.6
Triệt tiêu thừa số chung của .
Nhấp để xem thêm các bước...
Bước 13.1.13.6.1
Đưa ra ngoài .
Bước 13.1.13.6.2
Triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 13.1.13.6.2.1
Đưa ra ngoài .
Bước 13.1.13.6.2.2
Triệt tiêu thừa số chung.
Bước 13.1.13.6.2.3
Viết lại biểu thức.
Bước 13.1.14
Viết ở dạng một phân số với một mẫu số chung.
Bước 13.1.15
Kết hợp các tử số trên mẫu số chung.
Bước 13.1.16
Trừ khỏi .
Bước 13.2
Trừ khỏi .
Bước 14
là một cực đại địa phương vì giá trị của đạo hàm bậc hai âm. Đây được gọi là phép kiểm định đạo hàm bậc hai.
là cực đại địa phương
Bước 15
Tìm giá trị y khi .
Nhấp để xem thêm các bước...
Bước 15.1
Thay thế biến bằng trong biểu thức.
Bước 15.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 15.2.1
Rút gọn biểu thức bằng cách triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 15.2.1.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 15.2.1.1.1
Di chuyển dấu âm đầu tiên trong vào tử số.
Bước 15.2.1.1.2
Đưa ra ngoài .
Bước 15.2.1.1.3
Triệt tiêu thừa số chung.
Bước 15.2.1.1.4
Viết lại biểu thức.
Bước 15.2.1.2
Nhân.
Nhấp để xem thêm các bước...
Bước 15.2.1.2.1
Nhân với .
Bước 15.2.1.2.2
Nhân với .
Bước 15.2.2
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 15.2.2.1
Sử dụng quy tắc lũy thừa để phân phối các số mũ.
Nhấp để xem thêm các bước...
Bước 15.2.2.1.1
Áp dụng quy tắc tích số cho .
Bước 15.2.2.1.2
Áp dụng quy tắc tích số cho .
Bước 15.2.2.2
Nhân với bằng cách cộng các số mũ.
Nhấp để xem thêm các bước...
Bước 15.2.2.2.1
Di chuyển .
Bước 15.2.2.2.2
Nhân với .
Nhấp để xem thêm các bước...
Bước 15.2.2.2.2.1
Nâng lên lũy thừa .
Bước 15.2.2.2.2.2
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 15.2.2.2.3
Cộng .
Bước 15.2.2.3
Nâng lên lũy thừa .
Bước 15.2.2.4
Viết lại ở dạng .
Nhấp để xem thêm các bước...
Bước 15.2.2.4.1
Sử dụng để viết lại ở dạng .
Bước 15.2.2.4.2
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 15.2.2.4.3
Kết hợp .
Bước 15.2.2.4.4
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 15.2.2.4.4.1
Triệt tiêu thừa số chung.
Bước 15.2.2.4.4.2
Viết lại biểu thức.
Bước 15.2.2.4.5
Tính số mũ.
Bước 15.2.2.5
Nâng lên lũy thừa .
Bước 15.2.2.6
Triệt tiêu thừa số chung của .
Nhấp để xem thêm các bước...
Bước 15.2.2.6.1
Đưa ra ngoài .
Bước 15.2.2.6.2
Triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 15.2.2.6.2.1
Đưa ra ngoài .
Bước 15.2.2.6.2.2
Triệt tiêu thừa số chung.
Bước 15.2.2.6.2.3
Viết lại biểu thức.
Bước 15.2.3
Rút gọn biểu thức.
Nhấp để xem thêm các bước...
Bước 15.2.3.1
Viết ở dạng một phân số với một mẫu số chung.
Bước 15.2.3.2
Kết hợp các tử số trên mẫu số chung.
Bước 15.2.3.3
Trừ khỏi .
Bước 15.2.4
Câu trả lời cuối cùng là .
Bước 16
Đây là những cực trị địa phương cho .
là một cực tiểu địa phương
là một cực đại địa phuơng
Bước 17