Giải tích Ví dụ

Ước Tính Tích Phân tích phân từ 0 đến 1 của x^4e^(2x^5-7) đối với x
Bước 1
Giả sử . Sau đó , nên . Viết lại bằng .
Nhấp để xem thêm các bước...
Bước 1.1
Hãy đặt . Tìm .
Nhấp để xem thêm các bước...
Bước 1.1.1
Tính đạo hàm .
Bước 1.1.2
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 1.1.3
Tính .
Nhấp để xem thêm các bước...
Bước 1.1.3.1
không đổi đối với , nên đạo hàm của đối với .
Bước 1.1.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.1.3.3
Nhân với .
Bước 1.1.4
Tìm đạo hàm bằng quy tắc hằng số.
Nhấp để xem thêm các bước...
Bước 1.1.4.1
là hằng số đối với , đạo hàm của đối với .
Bước 1.1.4.2
Cộng .
Bước 1.2
Thay giới hạn dưới vào cho trong .
Bước 1.3
Rút gọn.
Nhấp để xem thêm các bước...
Bước 1.3.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 1.3.1.1
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 1.3.1.2
Nhân với .
Bước 1.3.2
Trừ khỏi .
Bước 1.4
Thay giới hạn trên vào cho trong .
Bước 1.5
Rút gọn.
Nhấp để xem thêm các bước...
Bước 1.5.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 1.5.1.1
Một mũ bất kỳ số nào là một.
Bước 1.5.1.2
Nhân với .
Bước 1.5.2
Trừ khỏi .
Bước 1.6
Các giá trị tìm được cho sẽ được sử dụng để tính tích phân xác định.
Bước 1.7
Viết lại bài tập bằng cách dùng , , và các giới hạn mới của phép tích phân.
Bước 2
Kết hợp .
Bước 3
không đổi đối với , hãy di chuyển ra khỏi tích phân.
Bước 4
Tích phân của đối với .
Bước 5
Tính tại và tại .
Bước 6
Rút gọn.
Nhấp để xem thêm các bước...
Bước 6.1
Áp dụng thuộc tính phân phối.
Bước 6.2
Kết hợp .
Bước 6.3
Kết hợp .
Bước 6.4
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 6.4.1
Di chuyển sang mẫu số bằng quy tắc số mũ âm .
Bước 6.4.2
Di chuyển sang mẫu số bằng quy tắc số mũ âm .
Bước 7
Kết quả có thể được hiển thị ở nhiều dạng.
Dạng chính xác:
Dạng thập phân:
Bước 8